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Abstract—Perfect space-time codes (STC) are optimal codes
in their original construction for multiple-input multiple-output
(MIMO) systems. Based on cyclic division algebras (CDA), they
are full-rate, full-diversity codes, have non-vanishing determinants
(NVD) and hence achieve diversity-multiplexing tradeoff (DMT).
In addition, these codes have led to optimal distributed space-time
codes when applied in cooperative networks under the assumption
of perfect synchronization between relays. However, they lose their
diversity when delays are introduced and thus are not delay-tol-
erant. In this paper, using the cyclic division algebras of perfect
codes, we construct new codes that maintain the same properties
as perfect codes in the synchronous case. Moreover, these codes
preserve their full-diversity in asynchronous transmission.

Index Terms—Cooperative communication, cyclic division
algebra, delay-tolerance, distributed space-time codes, perfect
codes, tensor product.

I. INTRODUCTION AND PROBLEM STATEMENT

D URING the past decade, MIMO techniques have experi-
enced a great interest in wireless communication systems.

Using multiple antennas at the transmitter and the receiver pro-
vides high data rates and exploits the spatial diversity in order
to fight channel fadings and hence improve the link reliability.
Lately, cooperative diversity has emerged as a new form of spa-
tial diversity via cooperation of multiple users in the wireless
system [1]. While preserving the same MIMO benefits, it coun-
teracts the need of incorporating many antennas into a single
terminal, especially in cellular systems and ad-hoc sensor net-
works, where it can be impractical for a mobile unit to carry
multiple antennas due to its size, power and cost limitations.

In cooperative networks, users communicate cooperatively
to transmit their information by using distributed antennas
belonging to other independent terminals. This way, a virtual
MIMO scheme is created, where a transmitter is also acting
as a relay terminal, with or without some processing, assisting
another transmitter to convey its messages to a destination.
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The cooperative schemes have been widely investigated by
analyzing their performance through different cooperative
protocols [1]–[3]. These protocols fall essentially into two
families: Amplify-and-Forward (AF) and Decode-and-Forward
(DF). In order to achieve the cooperative diversity, space-time
coding techniques of MIMO systems have also been applied
yielding many designs of distributed space-time codes under
the assumption of synchronized relay terminals [2]–[4].

However, this a priori condition on synchronization can be
quite costly in terms of signaling and even hard to handle in
relay networks [5], [6]. Unlike conventional MIMO transmitter,
equipped with one antenna array using one local oscillator,
distributed antennas are dispersed on different terminals, each
one with its local oscillator. Thus, they are not sharing the same
timing reference, resulting in an asynchronous cooperative
transmission.

On the other hand, in a synchronous transmission, the dis-
tributed STCs are constructed basically according to the rank
and determinant criteria [7] and hence aim at achieving full di-
versity. Note that the rows of the codeword matrix represent the
different relay terminals (antennas). So, when asynchronicity
is evoked, delays are introduced between transmitted symbols
from different distributed antennas shifting the matrix rows.
This matrix misalignment can cause rank deficiency of the
space-time code and thus performance degradation.

Therefore, the codes previously designed are no more effec-
tive unless they tolerate asynchronicity. Furthermore, an effi-
cient code design should satisfy the full-diversity order for any
delay profile. This intends to guarantee full-rank codewords dis-
tance matrix i.e., its rank equal to the number of involved re-
lays, hence leading to the so-called delay-tolerant distributed
space-time codes [6].

II. DELAY-TOLERANT DISTRIBUTED SPACE-TIME CODES

The first designs of such codes were presented by Li and Xia
[6] as full-diversity binary Space-Time Trellis Codes (STTC)
based on the Hammons-El Gamal stacking construction, its
generalization to Lu-Kumar multilevel space-time codes and the
extension of the latter codes for more diverse AM-PSK constel-
lations [8], [9]. Systematic construction including the shortest
STTC with minimum constraint length was also proposed in
[10], as well as some delay-tolerant short binary Space-Time
Block Codes (STBC) [11]. Recently, Damen and Hammons
extended the Threaded Algebraic Space-Time (TAST) codes
to asynchronous transmission [12]. The delay-tolerant TAST
codes are based on three different thread structures where
the threads are separated by using different algebraic or tran-
scendental numbers that guarantee a nonzero determinant of
the codewords distance matrix. An extension of this TAST
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framework to minimum delay length codes was considered in
[13].

Meanwhile, perfect space-time block codes that are optimal
codes originally constructed for MIMO systems [14]–[17], were
also investigated for wireless relay networks. In [18], [19], the
authors provided optimal coding schemes in the sense of DMT
tradeoff [20], based cyclic division algebras for any number of
users and for different cooperative strategies. Nevertheless, all
these schemes assumed perfect synchronization between users.
Then, it was in [21] that Petros and Kumar discussed the delay-
tolerant version of the optimal perfect code variants for asyn-
chronous transmission. They stated that delay-tolerant diago-
nally-restricted CDA codes and delay-tolerant full-rate CDA
codes can be obtained from previous designs by multiplying the
codeword matrix by a random unitary matrix. This matrix can
be taken specifically from an infinite set of unitary matrices that
do not have elements in the code field.

In this paper, we construct delay-tolerant distributed codes
based on the perfect codes algebras from a different point of
view. The new construction is obtained from the tensor product
of two number fields, one of them being the field used for the
perfect code. The codes are designed in such a way to main-
tain the same properties of their corresponding perfect codes
in the synchronous transmission, namely full-rate, full-diversity
and non-vanishing minimum determinant. In addition, unlike
the perfect codes, the new codes preserve the full diversity in
the asynchronous transmission.

III. BACKGROUND

Before addressing the STC construction, we dedicate this
section to briefly review the remarkable properties of the perfect
codes as analyzed in [14]–[17]. Then, following the framework
of [6], we present the cooperative communication model of
interest.

A. Perfect Space-Time Block Codes

The concept of Perfect Code was originally proposed in [14],
[15] for transmit antennas to describe a square

linear dispersion STC . The perfect codes are con-
structed from cyclic division algebras of degree

defined by
— and are number fields and the corresponding

ring of integers. is called the base field and taken as
or since the ST code transmits -QAM or

-HEX information symbols for or ,
respectively. Thus, the constellations can be seen as finite
subsets of the ring of Gaussian integers or
Eisenstein integers ,
respectively.

— is a cyclic Galois extension of of degree
with or a field extension

appropriately chosen in order to get an existing lattice and
a division algebra and an algebraic number.

— is the generator of the Galois group ,
. For an element , the

conjugates of are . So, the norm and the
trace are defined respectively as

(1)

— the set of nonzero elements of . It
is a non-norm element suitable for the cyclic extension

[15].
The cyclic division algebra is then expressed as a right

-space
(2)

with

and for all (3)

The Perfect Codes satisfy the criteria:
• Full-rate: The code transmits symbols drawn from

QAM or HEX constellation and thus has a rate of
symbols per channel use (spcu).

• Full-diversity: According to the rank criterion [7], the de-
terminant of the codeword distance matrix

for any two distinct codewords is nonzero.
By code linearity, it can be reduced to

(4)

• Non-vanishing minimum determinant: The minimum
determinant of any codeword distance matrix, prior to
SNR normalization, is lower bounded by a constant that
is independent of the constellation size

(5)

• Cubic shaping: The QAM or HEX constellations are nor-
malized according to the power at the transmitter so that the
real vectorized codeword vectors are isomorphic to cubic
lattices or . In other words, the rotation matrix

encoding the information symbols into each layer is re-
quired to be unitary to guarantee the energy efficiency of
the codes. The shaping constraint leads thus to two other
properties. The first one is the Uniform average trans-
mitted energy per antenna. The second one is the Infor-
mation losslessness as the unitary linear dispersion matrix

allows to preserve the mutual information of the MIMO
channel.

Thanks to prominent results on diversity-multiplexing
tradeoff [20], the perfect codes also verify two other equivalent
properties:

• DMT optimality: In [16], Elia et al. proved that the full-
rate STCs from cyclic division algebra having NVD prop-
erty achieve the optimal DMT in Rayleigh fading channel.

• Approximate universality: Being CDA-based codes
with NVD property, the perfect codes are approximately
universal and achieve DMT for arbitrary channel fading
distribution.
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Fig. 1. Cooperative System Architecture.

Satisfying all these criteria, the perfect codes showed to im-
prove the performance in terms of error probability upon the
best known codes.

B. Cooperative System Model

In the sequel, we consider a cooperative system with a source
communicating to a destination via relays in two

phases as in Fig. 1 and without direct links between the source
and the destination. In the first phase, the source broadcasts its
message to the potential relays. In the second phase, the relays
use the DF protocol to detect the source message then if suc-
cessfully detected transmit it to the destination. We assume that
all the relays are able to achieve error free decoding which
could be possible by selecting the source-relays links and con-
sider only the links that are not in outage. Note that it could
also be possible that not all the relays may successfully decode
the original message, so the number of transmitting relays is
usually assumed as a random variable. Since the relays trans-
mission overlap in time and frequency, they can cooperatively
implement a distributed space-time code.

Considering only the second phase of transmission, the
system is equivalent to a MIMO scheme where the distributed

perfect space-time code is used by the relays, with
transmit antennas one by relay and receive antennas at

the destination. Every time slot , the relays send
the column vector of the codeword and the
destination receives

(6)

where is the additive white Gaussian noise with i.i.d com-
plex Gaussian variables with zero-mean and variance ,

, , being the noise variance per real
dimension. represents the complex channel ma-
trix modeled as i.i.d Gaussian random variables with zero mean
and unit variance . The channel is assumed quasi-
static with constant fadings during a transmitted codeword and
independent fadings between subsequent codewords. Dealing
with square STCs , the codeword matrix contains

information symbols carved from 2-d QAM or
HEX finite constellations denoted by .

C. Asynchronous Cooperative Diversity

The above expression (6) is valid only when relays are
synchronized. In the presence of asynchronicity, the codeword

transmission is spanned on more than symbol intervals
due to delays. Although the symbol synchronization is not
required, we assume that the relays are synchronized at the
frame-codeword level, which can be provided by means of
network feedback signaling from the destination. Therefore,
the start and the end of each codeword are aligned for different
relays by transmitting zero symbols, and hence, there is no
interference between codewords transmission. We further as-
sume that the timing errors between different relays are integer
multiples of the symbol duration and the fractional timing
errors are absorbed in the channel dispersion. In the codeword
matrix, these delays are also filled with zeros; they are known
at the receiver but not at the transmitting relays [6].

Denoting a delay profile by , a delay
corresponds to the relative delay of the received signal from the

relay as referenced to the earliest received relay signal. Let
denotes the maximum of the relative delays, then from the

receiver perspective, the codeword matrix was
sent instead of the space-time code.

D. Motivation of the Code Construction

The diversity order of any space-time code is defined by the
minimum rank of the distance codeword matrix over all pairs
of distinct codewords [7]. The distributed perfect codes

are full-rate full-diversity for the synchronous transmission
between the relays and the destination. Note that in general, a
transmission between source, half-duplex relays and destination
will result in rate loss. When asynchronicity is introduced, the
code is no more full-rate since it is spanned on
time instants. Moreover, certain delay profiles can result in
linearly dependent rows; thus, the code will lose its full-diversity
property. Let us illustrate this by the following example.

Example of Golden Code: We consider the distributed
2 2 Golden code transmitting 4 information QAM symbols

from two synchronized relays with the codeword
matrix.

(7)

The Golden code is designed on a cyclic field extension of de-
gree 2 over the base field . Using the generator matrix of
the corresponding complex 2-d lattice, the codeword elements
are lattice points obtained by linear combination of pairs of
symbols.

Now, let the first relay be delayed by one symbol period with
respect to the second , such that the new asynchronous
codeword matrix be

(8)
Suppose we have two distinct codewords and with

and the other symbols equal i.e.,
. The difference between matrix codewords is

defined in both synchronous and asynchronous cases as

(9)
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It can be seen that is a full-rank matrix whereas
has rank one, so the Golden code is not a delay-tolerant code.

In fact, it can be seen from the asynchronous codeword ma-
trix that some symbols are aligned at the same instant due to
delays losing thus diversity. In order to resolve this problem of
rank deficiency, our solution consists in transmitting from each
antenna (relay) at each transmission time a different combina-
tion of all the 4 information symbols. This way, in the presence
of delays, we ensure that any combined symbol sent from the 2
relays arrives at the destination in at least 2 different instants,
hence guaranteeing the full-diversity order of the space-time
code.

A new 2 2 STC will have then the shifted codeword matrix

(10)

Now, to get these 4 linear combinations of the 4 symbols, we
need a higher dimensional lattice compared to the
2-d lattice used for the Golden code. So, we propose to obtain
the corresponding 4 4 lattice generator matrix by the tensor
product of two field extensions of , one of them being the
field extension of the Golden code.

Following this idea, we aim at constructing, in general, new
codes that are based on CDA of the perfect codes

such that they maintain the same optimal properties as perfect
codes in the synchronous case. But also, these codes preserve
their full-diversity in asynchronous transmission and thus are
delay-tolerant for arbitrary delay profile.

IV. CONSTRUCTION OF DELAY-TOLERANT DISTRIBUTED

CODES BASED PERFECT CODES ALGEBRAS

A. General Construction

The approach consists in constructing a division algebra iso-
morphic to the tensor product (also called Kronecker product
or cross-product) of two number fields of lower degrees. Other
constructions based on the crossed-product algebras have been
investigated in [22], [23] either for prime or coprime degrees of
the composite algebras. In these constructions, the space-time
code was built on the cyclic product algebra. However, in the
present construction, the higher degree algebra is only used to
derive appropriately the space-time code.

Since we intend to construct a full-rate space-time
code that is based on the CDA of the full-rate per-
fect code, then the first algebra to be considered is the cyclic
division algebra of the perfect code of de-
gree over the base field . For sake of simplicity, we
analyze in the sequel the case of Gaussian Field to
explain the construction. Indeed, we consider the cyclic field ex-
tension of degree over , being an
algebraic number. The principal ideal is generated
by an element and its integral basis is
(or if unitary, it is given by ). The

Fig. 2. Compositum Field of the Tensor Product Algebra.

basis of the complex algebraic lattice is obtained by ap-
plying the canonical embedding to . Consequently, the gen-
erator matrix corresponds to the rotation matrix in

...
...

. . .
...

(11)

where is a normalization factor used to guarantee the ma-
trix unitarity.

Now, we consider another Galois extension over of the
same degree such that its discriminant is coprime to
the one of i.e., . Let with

an algebraic number. The Galois group is generated by
as . The principal ideal of the algebra is
such that , and thus, its integral basis is given by

. The canonical embedding of gives
another complex rotated lattice of that is generated by the
unitary matrix with the normalization factor

...
...

. . .
...

(12)

The tensor product of both field extensions allows to build
a rotated lattice in higher dimension corresponding to the com-
plex unitary matrix based on the previous
constructions. According to [24],

Proposition 1: Let be the compositum of the above Galois
extensions, of order

over as presented in Fig. 2.
Since and have coprime discriminants, the corre-

sponding lattice generator matrix can be obtained as the tensor
product of the previous unitary generator matrices. See (13),
shown at the bottom of the next page. Consequently:
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Proposition 2: Let the
order of the extensions, then the discriminant of is

. The minimum product distance of the lattice is derived
from the discriminant of as

(14)

Using the matrix , the space-time coded components
are given by the linear combination where

is the information symbol vector
carved from a constellation . Then, the
space-time codeword matrix is defined by distributing the com-
ponents with appropriate constant factors . It
can be represented as a Hadamard product

...
...

. . .
...

(15)

The key idea in the code construction is to determine the co-
efficients that allow one to preserve the same properties of
the corresponding perfect codes in synchronous transmission
(Section III-A).

• On one side, it can be seen that the new code transmits
information symbols and thus is full-rate with
spcu for a relays-destination transmission phase.

• On the other side, we need to find the factors that satisfy
the rank criterion (4) in order to have full-diversity codes.

• Moreover, the perfect codes have non-vanishing minimum
determinants. Then, we are interested in deriving
ST codes that have not only nonzero determinants, but also
these determinants do not vanish when constellation size
increases.

• In order to guarantee uniform energy distribution in the
codeword, we ask that verify . Choosing further
the coefficients yields better determinants
as obtained for the non-norm elements of the perfect
codes [15]. This restricts the values of to .

• It can also be noticed that the new code satisfies the cubic
shaping property since the generator matrix of the

-dimensional lattice is unitary and hence the code is
information lossless.

In addition, when asynchronicity between relays is involved,
the rank criterion should be also verified for the shifted ma-
trix and another criterion will be analyzed that is the nonzero
product distance of the codeword matrix in order to prove that
the new codes are delay-tolerant and thus keep their full-diver-
sity in asynchronous transmission.

V. NEW DELAY-TOLERANT CODES FROM 2,3,4-DIMENSIONAL

PERFECT CODES

Based on the previous approach, we consider the perfect
codes proposed in [14], [15] for dimensions to
construct the new delay-tolerant codes. Then, in the next sec-
tion, we apply this construction for the perfect codes presented
for any number of antennas in [17].

A. 2 2 Code Based on Golden Code

The Golden Code was constructed in [14] using the cyclic
division algebra of degree 2 over .

is a Galois extension of degree 2. It is a 2-d
vector space of with basis , being
the Golden number. Its Galois group is generated
by . In order to get a rotated lattice
of , the principal ideal generated by

was found. Its basis is and its unitary
generator matrix is given by

(16)

with and the respective conjugates
of and .

Let the cyclotomic extension of degree 2 over
with the primitive root of unity. Its

discriminant and it is coprime to the one of since
. The Galois group is generated by

and the integral basis of is . The
corresponding unitary generator matrix is

(17)

...
. . .

...
. . .

...
. . .

...

...
. . .

...
. . .

...
. . .

...

...
. . .

...
. . .

...
. . .

...

(13)
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Therefore, is the compositum of
Galois extensions of degree 2 each, with coprime discriminants.
The 4 4 unitary matrix is obtained by the tensor product of
previous matrices as

(18)

and the codeword matrix is defined by

(19)

where are the components of the vector with
are -QAM symbols. We propose now to de-

termine the coefficients that satisfy the
non-vanishing determinant criterion.

Non-Vanishing Minimum Determinant: The determinant of
this codeword matrix equals

(20)

By developing and , we obtain

(21)

(22)

and (23)

It is interesting to note that the Golden codeword given by ma-
trix (7) has a determinant of

(24)

Therefore, by choosing and ,
the determinant of the new code is equal to the Golden code
determinant and does not vanish when increasing the size of
the QAM constellation carved from . Hence, the new code
achieves the diversity-multiplexing tradeoff [16], [20].

It can also be noticed that the coefficients can be
changed equivalently to the coefficients of the Fourier matrix

where is the primitive root of
unity. For dimension 2, we have

(25)

Furthermore, we have find fixed unitary matrices and
such that for all values of with

(26)

Delay-Tolerance: In the distributed setup, each row of the
code matrix is transmitted by a different relay (Section III-B).
In practical scenarios, the two relays do not share a common

timing reference, and, therefore, the arrival of packets is not syn-
chronous. As we assume synchronization at the symbol level,
the distributed code can still achieve full diversity if the differ-
ences between matrix codewords are full rank even when the
different rows are arbitrarily shifted. In what follows, we prove
that the new code satisfy this condition.

Consider the shifted codeword matrix of

(27)

we need to guarantee that it is full rank when i.e., for any
from the constellation .

This restricts to show that the 2 2 submatrix

is full rank i.e., its determinant when .
More generally, having delay profiles or , the

problem turns to prove that the product distance in the rotated
constellation associated with the matrix of is nonzero over

, so that any component product is nonzero. This product
distance is evaluated as

(28)

with for
.

As a direct consequence from the tensor product construction,
(14) gives

Thus, the minimum product distance is nonzero. It can also be
verified in by setting . So, is
nonzero unless and consequently the
submatrix is full rank since unless .

Therefore, the new code unlike the Golden code keeps its
full-diversity in the case of asynchronous relays. However, we
cannot guarantee the non-vanishing determinant property in the
asynchronous case because the expression of can be inter-
preted as a Diophantine approximation of by rational num-
bers which can be made tighter by using larger constellation
size.

B. 3 3 Code Based on 3 3 Perfect Code

In order to construct the delay-tolerant 3 3 code, we con-
sider the base field and we use -HEX symbols. Let

, with the root of unity.
The 3 3 perfect code was constructed using the cyclic divi-
sion algebra of order 3 [15], where the rela-
tive extension and the generator of the cyclic
extension with . The integral
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basis is given by
and the complex

lattice is a rotated version of . It is generated by

(29)

The relative discriminant of is . Another exten-
sion of of degree 3 that has coprime discriminant with
is the cyclotomic extension with
the primitive root of unity and . Its Galois group

is generated by . The integral basis
of is and the lattice generator matrix is

(30)

The compositum of both extensions
is of order 9 over . Then, the

corresponding 9-d complex lattice is generated by the 9 9
unitary matrix

(31)

and the 3 3 space-time code is defined by the matrix

(32)

where are the components of vector , being the infor-
mation symbol vector carved from constellation.

Non-Vanishing Minimum Determinant: By proceeding
as previously, we need to determine the coefficients

that guarantee the non-vanishing minimum
determinant. In order to get so that a uniform average
energy is transmitted per antenna and to obtain better values of
the determinant, we limit the choice of to .

By developing the code determinant using symbolic compu-
tation under Mathematica, we find that it has the same expres-
sion as the 3 3 perfect code determinant by choosing as the
Fourier matrix coefficients in

(33)

Therefore, the 3 3 infinite code has non-vanishing min-
imum determinant equal to

(34)

Delay-Tolerance: On the other hand, to prove the delay-tol-
erance of this code, we should guarantee that the corresponding
shifted codeword matrices are full rank. Therefore, it suffices to

verify that for each asynchronous matrix there exists a square
3 3 matrix that is full rank i.e., its determinant is nonzero. In
fact, if we enumerate all the delay profiles, it can be noticed that
the problem of guaranteeing full-rank shifted matrices turns to
guarantee that:

— All component products are nonzero. This condi-
tion is always verified since the product distance

over as .
— All 2 2 minors of are nonzero that is equivalent to

verify that the 9 entries of the cofactor matrix of are
nonzero.

In order to prove the second condition, we find two unitary
matrices and such that the codeword matrix can be
written as for all , with is the perfect code matrix
and and are defined by

(35)
Let define the cofactor matrix of the perfect code by . Since
is a finite subset of the cyclic division algebra , is also a

subset of taken from the lattice
with and is the ring of integers of . Hence, the
cofactor matrix can be represented as a 3 3 codeword matrix.
For simplicity, we denote by and , the
conjugates of an entry of the codeword matrix. The cofactor
codeword matrix is then defined by

(36)

where each diagonal .
Since , we denote its cofactor matrix. It is given

by and satisfies

(37)

with

(38)

Developing the cofactor matrix , we get (39), shown at the
bottom of the next page.

Note that the Galois group has two genera-
tors and , it is given by

(40)

From the expression of (39), we define by (41) (shown at the
bottom of the next page) the elements and their conjugates
by the embeddings with

. We also have and
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the conjugates of by the embeddings .
Then, the cofactor matrix can be rewritten as

(42)

Finally, computing the product distance of this matrix, we get
the product of all the 9 entries that is the product of all
the 9 conjugates of and thus

(43)

As a result, the elements of are all nonzero unless which
concludes our proof on the full-diversity of the 3 3 code ;
hence, its delay-tolerance for any arbitrary delay profile.

C. 4 4 Code Based on 4 4 Perfect Code

Similarly to the 2 2 case, the 4 4 code is derived over
based on the 4 4 perfect code algebra. Let

, the relative extension is
of degree and its relative discriminant is

. The cyclic Galois group is generated by
. The integral basis is

and the complex rotated lattice of is
generated by the unitary matrix

(44)

The second relative extension is chosen such that its de-
gree is 4 over and has coprime discriminant with . Let

this cyclotomic extension with and

the primitive root of unity. The cyclic Galois
group is generated by . The integral basis of

is and the lattice generator matrix in
is given by

(45)

Then, the tensor product of both cyclic extensions defines
the compositum field of
order 16 over . Accordingly, the 16-d complex lattice is
generated by the 16 16 unitary matrix .
The 16 codeword elements are derived from the linear combi-
nation of -QAM information symbols. They are then
distributed in the 4 4 codeword matrix and assigned the co-
efficients as

(46)

Non-Vanishing Minimum Determinant: The coefficients
are restricted to for uniform energy transmission and
should satisfy the NVD criterion. Therefore, as in previous
dimensions, computing the code determinant using symbolic
computation under Mathematica, we find that such coefficients
corresponding to the Fourier matrix coefficients in allow
to get a 4 4 space-time code with the same determinant as the
perfect code. We have

(47)

Therefore, the 4 4 infinite code has non-vanishing min-
imum determinant

(48)

(39)

(41)
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and the 4 4 codeword matrix is defined for by

(49)

Delay-Tolerance: Now, let us examine the delay-tolerance
aspect of this code. For this task, we start by enumerating all the
types of delay profiles. Consider the integer numbers
with and , we can define four
types of profiles as:

— Type 1 of form .
— Type 2 of form .
— Type 3 of form .
— Type 4 of form .
Each of the asynchronous shifted codeword matrices corre-

sponding to these profiles is full rank if and only if it includes
a square 4 4 matrix that is full rank i.e., a 4 4 minor that is
nonzero. This will be proved in the sequel for the different delay
profile types.

Types 1 and 4: If we consider the delay profiles of types 1
and 4, for instance , and

, the 4 4 minors relative to the 4 4 shifted
matrices can have one of these expressions:

— The product of some components of the codeword matrix
.

— The product of one component and a 3 3 minor
.

Proof 1: In the first case, we have by construction that

all component products are nonzero since

.
In the second case, following the same analysis of the 3 3

space-time code, we find the unitary matrices and

(50)

such that the new 4 4 code can be written as ,
being the 4 4 perfect code. Then, we derive the cofactor matrix

and prove that it has nonzero entries as its product distance is
nonzero. Thus, the 3 3 minors are full-rank yielding full-rank
shifted matrices.

Type 2: For delay profiles of type 2, for instance
, and ,

we can find 4 4 minors in the relative shifted code-
word matrices that are equal to

(51)

where has its components such that only one
. So, the 4 4 minors are nonzero if these 2 2 minors are

nonzero for any .
Proof 2: Let

(52)

be such 2 2 minor and consider any 3 3 minor that
includes , for example

It can be expanded into

(53)

By developing the 2 2 minors, we have according to the 4 4
codeword matrix (49)

(54)

then

(55)

If , can be zero since is a
trace and can be zero (if ). However,
we have from Proof 1 that any 3 3 minor is nonzero over .
Thus, cannot be zero over unless . By a similar
analysis, we can prove that any 2 2 minor of the same form of

is nonzero for .
Type 3: For this type, we distinguish two cases of profiles:

3I such as and

3II such as
In the first case, there exist 4 4 minors that are equal to the

product of two 2 2 minors such that these have there
components with only one , hence are nonzero
according to Proof 2.

In the second case, the 4 4 minors are functions of 2 2
minors as following

(56)
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and, thus, we have to prove that this sum is nonzero over .
For this task and without loss of generality, we consider the
delay profile .

Proof 3: Let the 4 4 minor relative to this delay profile
be

(57)

with according to the codeword matrix in (49)

(58)

then

(59)

By denoting the first term in this expression and the second
term , then

(60)

Recalling , we can notice that it can be written as

Let be with
. Then

(61)

For simplicity, we denote the conjugate , so we have

(62)

Let us now examine the nested sequences of fields included
in the compositum field in Fig. 7. We have

(63)

(64)

with the perfect algebra ,
where and

. As we have , is the
subfield fixed by the subgroup of order of the
Galois group [25].

On the other hand, we have the cyclotomic algebra
and

. As we have , is
the subfield fixed by the subgroup of order of
the Galois group [25].

From the nested sequence of fields (71), we can deduce that

(65)
On the other hand, we have , we can define it as

with ,
then

(66)

Therefore, we can define as

(67)

with

(68)

It can be seen as a vector space of with basis
, and thus, if and only if

. This condition reduces to

(69)

So in order to prove that the 4 4 minor is nonzero, we have
to prove that the latter condition cannot be verified. We proceed
by contradiction.

For this task, we show that by assuming that
are verified, we cannot have . In fact, if , one particular
case would be when , so that . However,
if and according to (64) and , we have
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. Consider the general case where , we
can define it by

(70)

and its conjugate by . We have then

(71)

Since , thus is of the form ,
with . Therefore, we have

(72)

Let us now compute given this condition ac-
cording to . Recall that with

, then and can be
reduced to

(73)

(74)

and

(75)

On the other hand, we have according to
and (65) that . So, it can be simplified to

(76)

Therefore

(77)

However, means that as well. But, we have
already proved in Proof 2 that over unless .
Consequently, , then . So Given

, we prove here that , and thus, cannot be
zero over for .

This last proof concludes the analysis on the full-rank asyn-
chronous codeword matrices for the different types of delay
profiles i.e., the full-diversity of the 4 4 code , hence its
delay-tolerance for arbitrary delay profiles.

VI. NEW DELAY-TOLERANT CODES FROM

OTHER PERFECT CODES

We derive now delay-tolerant codes from the perfect codes
presented in [17]. These latter codes differ from the previous
ones by the construction of their generator matrices and their
non-norm element . Whereas this element was chosen as a
root of unity in 2,3,4-dimensional perfect codes , for
the current codes it is of the form

where is an element of and its complex conjugate. is
chosen as a suitable prime in or so that the element
is of unit norm and it is non-norm for the extension .

Based on the same approach in Section IV-A, the delay-tol-
erant code is constructed using the tensor product of two number
fields with the same degree and coprime discriminants. In pre-
vious dimensions, the second field corresponds to the cyclo-
tomic extension where is the root of
unity since the non-norm element of the perfect code is itself a
root of unity. Consequently, the relative extension will be here

with is the root of the non-norm
element .

A. 2 2 Code

We consider the case of 2 antennas. The corresponding 2 2
perfect code was constructed in [17] on the field
and thus transmits -QAM symbols. Let and

the relative extension of of degree
. The cyclic group is generated by and

the cyclic algebra is then with the non-norm
element

The rotated lattice is obtained by a technique presented in
[17], [24] different from the one used for previous perfect codes.
The generator matrix is numerically given by [26]

(78)

Now, let the cyclotomic extension of degree 2
of with . Its relative discriminant is
and is coprime to . The cyclic Galois group generator
is and the integral basis is . The
rotated lattice is generated by the unitary matrix

(79)

Then, the compositum of both cyclic extensions is defined by
of order 4 over and ac-

cordingly the 4-d complex lattice is generated by the 4 4 uni-
tary matrix . The codeword components are
derived from the linear combination of -QAM in-
formation symbols. They are then distributed in the 2 2 code-
word matrix assigned by the Fourier matrix coefficients

in dimension 2 in order to guarantee the same NVD as
the corresponding 2 2 perfect code. Both matrices and
can also be derived by replacing by . Moreover, the code
construction allows to have a nonzero product distance, yielding
a delay-tolerant code that maintains its full diversity regardless
of the timing offset among its rows as shown for the previous
2 2 delay-tolerant code.

VII. PERFORMANCE EVALUATION OF

DELAY-TOLERANT CODES

In this section, we evaluate the performance of the proposed
distributed space-time codes used by the relays in synchronous
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Fig. 3. Performances of the codes , , (or ), and without delay.

Fig. 4. Performances of the codes , , (or ), and with a delay of 1
symbol period.

as well as asynchronous transmission. Recalling the coopera-
tive system model presented in Section III-B, a virtual MIMO
scheme is assumed with transmit antennas (one per relay)
and receive antennas. The decoding is performed using the
Sphere Decoder as for the perfect codes in conventional MIMO
transmission. However, in the case of asynchronous relays, the
codewords are transmitted over symbol intervals re-
sulting in rank deficiency of the channel matrix. In order to
tackle this problem, the MMSE-DFE preprocessing [27] is re-
quired to precede the lattice decoding so that the transformed
channel has always full rank.

The performance are represented in terms of codeword error
rate CER and bit error rate BER versus signal-to-noise ratio

per receive antenna, which is adjusted as

(80)

where is the average energy per receive antenna and is the
code rate in bits per channel use (bpcu).

Fig. 5. Performances of the codes , , and with a delay of 1 symbol
period.

Fig. 6. Performances of 3 3 codes w/wo delay.

A. Performance Comparison of Existent 2 2 Codes

For 2 2 schemes, we consider the full-rate full-diversity ex-
istent space-time codes in this dimension, namely the Golden
code [14], or its variation matrix proposed in [28]

the Silver code (Tirkkonen–Hottinen Code) [29], [30] defined
by

and
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Fig. 7. Nested Sequences of fields.

the Sezginer-Sari code [31] defined by

the Damen code [12] defined by

with , ,

, and the new proposed

code given in (19). These codes are compared in a distributed
setup with and without delays. Note that the code has been
proved to verify the NVD criterion for any constellation carved
from and to be delay-tolerant [32].

In the above 2 2 schemes, the codewords matrices contain
4 modulated information symbols carved from 4-QAM constel-
lation and transmitted over channel uses. The transmis-
sion rate is hence , where is the max-
imum delay with the delay profile in asynchronous
transmission.

Fig. 3 shows the codes performances for synchronous relays
. Observe that the Golden code (or ) outper-

forms all the other codes. For example, it has about 1 dB and
0.5 dB gains over and , at a BER of , respectively.
Note also that the new code gives the same performance of
the Golden code.

Whereas for asynchronous relays, the situation is reversed
between codes and for a delay of one symbol period since
the latter is not delay-tolerant. It can be seen in Fig. 4 that both
delay-tolerant codes and provide gains of 2 dB and more
than 3 dB over codes and , at a BER of , respectively.
In addition, it can be noticed that performs almost similar to

and it merely improves for high SNR by 0.2 dB
at a BER of .

Using the unitary matrices and that provide the new
code from the Golden code , we can also obtain new delay-
tolerant codes based on and codes as

and (81)

Note that and are not necessarily the optimal matrices for
these codes, but they allow to have new delay-tolerant codes
with the same determinants as the initial ones. One can easily
verify as demonstrated for code that the product distances
associated with these new codes are nonzero over . Fig. 5
depicts the performances of the new codes for asynchronous
relays with a delay of 1 symbol period. It can be observed that
all these delay-tolerant codes preserve their diversity and that
the code gives the best performance. At a BER of ,
it gains about 0.2 dB and 0.8 dB over and , respectively.
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B. Performance of 3 3 Codes

For the 3 3 schemes, 9 modulated symbols carved from
4-HEX constellation are transmitted at a rate of

bpcu, where is the maximum delay and
the delay profile in asynchronous transmission.

In Fig. 6, we can observe that both the perfect code and the
new code have the same performance for synchronous relays.
Whereas for asynchronous relays, the delay-tolerant code pre-
serves the diversity and provides a gain of 5 dB over the 3 3
perfect code at CER of for .

VIII. CONCLUSION

In this paper, we have proposed new delay-tolerant space-
time codes based on the perfect codes algebras. Using tensor
product of the perfect code field extension with another field
extension of the same order over the same base field and
which Galois extensions have coprime discriminants, we build
rotated lattices in higher dimension in order to construct
codes. A key parameter in the construction is the coefficients
that allow to preserve the same properties of the perfect codes
in synchronous transmission.

We have found that corresponding to the coefficients of the
Fourier matrix in dimension yield the same non-vanishing
determinants as the perfect codes. These codes besides having
full-rate, full-diversity, uniform energy per transmit antennas

and are information lossless, they have the NVD
property and thus are optimal DMT achieving in synchronous
case.

In addition, for asynchronous transmission, we have proved
for that the new codes preserve their full-diversity
and are delay-tolerant for arbitrary delay profiles. This property
is obtained thanks to the nonzero product distances over or

and the full-rank minors of the delayed matrices.
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