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Abstract—In this paper, we partition the 4×4 Perfect Code in
order to increase the minimum determinant between codewords,
and hence improve the performance in slow fading channels.
Using Construction A at the encoder, we construct the lattices
corresponding to Perfect Code subcodes at different levels of the
partition chain, and we find the convenient binary codes. This
partition is made in the same manner as [3] for Golden Code.
We propose also a new decoder, based on Stack decoder, which
is valid for partitioning schemes. It achieves ML performance
with significantly reduced complexity. Suboptimal versions are
presented to reduce furthermore the complexity.

I. INTRODUCTION

Perfect Codes were introduced for uncoded MIMO trans-
mission in [1], [2] as full-rate, full-diversity, information loss-
less codes achieving diversity-multiplexing tradeoff. There-
after, Golden space-time coded modulation were presented
over slow fading channels by concatenating the Golden Code
with an outer channel code [3], [4]. Since the minimum
determinant of the Golden Code is constant, set partitioning
is used to increase the minimum determinant then to design
the trellis coded scheme in [3]. While in [4], it is used to
increase the minimum hamming distances between codewords
using Reed Solomon code. Motivated by the interesting gains,
we apply in this paper the partitioning scheme of [3] on the
4 × 4 Perfect Code.

II. SYSTEM MODEL

We consider a MIMO transmission system with Nt = 4
transmit antennas and Nr = 4 receive antennas over a slow
fading channel where the channel coefficients remain constant
over a frame of L codewords. Using the 4 × 4 Perfect Code
for space-time coding, at each time slot, the complex received
signal is defined by

Y = HX + N; Y,X,N ∈ C4×4. (1)

N is the i.i.d. additive white gaussian noise ∼ NC(0, N0), and
H the complex channel matrix with i.i.d. gaussian variables
∼ NC(0, 1). The channel is assumed to be perfectly known at
the receiver. The transmitted 4 × 4 signal matrices X contain
16 symbols and can be selected according to two options:

1) X are independent codeword matrices of the 4 × 4
uncoded Perfect Code P .

2) X are independent codeword matrices chosen from a
linear subcode Pk of the Perfect Code.

First, we represent the “Uncoded Perfect Code P” system
model. In this case, the codeword matrices X are linear

combination of 16 information symbols s1, s2, . . . , s16 carved
from Q-QAM constellation [2]. The minimum determinant of
the finite Perfect Code P is given by

δmin(P) = min
X ̸=0,X∈P

| det(XX†)|, (2)

where [.]† represents the hermitian operator.
In order to derive the real lattice representation, the code-

word matrix is first vectorized then the real and imaginary
parts are separated to obtain the real 32 × 32 rotation matrix
R. Thus, the Perfect Code can be seen as a rotated algebraic
lattice of dimension n = 2NtT = 2NrT = 32 and the system
model is redefined as following

RZ32 = {x;x = Rs, s ∈ Z32}, (3)
y = Hx + n = HRs + n, (4)

where the real-valued vectors of s,y,x and n are obtained by
applying [ℜ(vi),ℑ(vi)] , i = 1, . . . , 16 on each component vi

of the corresponding complex vector. The real channel matrix
H is given by block diagonal of 4 real matrices H′. H′ is
obtained by applying

[
ℜ(hij) −ℑ(hij)
ℑ(hij) ℜ(hij)

]
(5)

on each coefficient hij of the complex channel matrix H.
Decoding this lattice is then based on the search for the

closest lattice point ŝ that minimizes the euclidian distance to
the received vector y, i.e.,

ŝ = arg min
s∈Z32

∥y −HRs∥2. (6)

III. 4 × 4 PERFECT CODE PARTITION

An approach to increase the coding gain over the uncoded
scheme can be achieved by partitioning the 4 × 4 Perfect
Code which increases the minimum determinant between
codewords. This technique consists first in choosing a good
ideal to obtain the perfect subcodes, then identifying the
lattices and the binary codes corresponding to these subcodes
using construction A and lattice set partitioning by coset codes
[5].

A. Choice of the Ideal
The 4 × 4 Perfect Code was constructed using the cyclic

division algebra A(K/Q(i),σ, i) of order 4, where K =
Q(i, 2 cos(2π/15)) [2] such that

A = 1 · K ⊕ e · K ⊕ e2 · K ⊕ e3 · K, e4 = i. (7)
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In order to perform binary set partitioning, we need an ideal
IA of A whose index in P is a power of 2 and norm is 1+ i.
Note that the algebra A is seen as an extension of order 4 over
K with minimal polynomial X4 − i as e4 = i. But this cyclic
algebra is not commutative and thus it will be difficult to find
the ideal. So, let us consider the field extension L = Q(ζ16)
of order 4 over Q(i) with ζ16 = exp( iπ

8 ) is a primitive 16-th
root of unity and X4 − i is the minimal polynomial. Using
the software KANT, we factorize the prime 2OL, where OL
is the ring of integers of L. We find 2OL = I4 where I is a
principal ideal generated by ν = 1 + ζ3

16 whose norm relative
to Q(i) is 1+ i. To construct the principal ideal of A, we map
the elements of L to A by replacing ζ16 with e. Thus, we get
the principal ideal IA generated by B = 1 + e3 with reduced
norm Nred(B) = 1 + i and represented by the matrix

B =

⎡

⎢⎢⎣

1 0 0 1
i 1 0 0
0 i 1 0
0 0 i 1

⎤

⎥⎥⎦ with e =

⎡

⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
i 0 0 0

⎤

⎥⎥⎦ . (8)

B. Perfect Subcodes and Lattices Identification
The subcodes Pk are obtained as right principal ideal of P

where k is the partition level

Pk = {XBk,X ∈ P} and Pk ⊆ P. (9)

Since the Perfect Code P has been previously identified
as a rotated lattice of Z32, then all the perfect subcodes
Pk correspond to sublattices Λk of Z32 and their minimum
determinant will be ∆min = 2kδmin as det(B) = 1 + i.

In addition, B is of index 16 over Z32
(
Z32 = Z[i]16

)
,

so we have 16 cosets i.e., 16 ways of partition between any
consecutive lattices. Thus, we need 4 bits to label these cosets.
Considering the powers of the ideal, we notice that B8 = 2I4

after lattice reduction, then P8 = 2P is the scaled Perfect
Code that corresponds to 2Z32. Therefore, we have k = 8
levels to complete the partition chain from Z32 to 2Z32.

Using Construction A [5], any integer lattice can be related
to a linear binary code so that any sublattice can be written as

Λk = 2Z32 + Ck. (10)

In order to identify these sublattices in the partition chain, we
vectorize the subcodes matrices (vec) and we proceed to real
and imaginary parts separation (real) as for the Perfect Code.
We obtain

Rks = real
(
vec

(
XBk

))
. (11)

The sublattices generator matrices are obtained as Tk =
RT Rk with the matrices Tk obtained after lattice reduction.
Then, the lattices are identified according to their Gram
matrices [5] since

det(Λk) = det(Gram(Tk)) = det
(
TTT

)
, (12)

and by finding the corresponding binary codes Ck(n, k′, d)
that need 4 additional redundant bits at each level of partition
to label the 16 cosets so that k′ = n−4k. We present in Table I

TABLE I
PARTITION CHAIN OF THE 4 × 4 PERFECT CODE

k PC subcode Lattice Binary code ∆min

0 P Z32 C0(32, 32, 1) δmin

1 P1 D4
8 C1(32, 28, 2) 2δmin

2 P2 D8
4 C2(32, 24, 2) 4δmin

3 P3 D6
4L8 C3(32, 20, 2) 8δmin

4 P4 E4
8 C4(32, 16, 4) 16δmin

5 P5 D2
4L3

8 C5(32, 12, 4) 32δmin

6 P6 L4
8 C6(32, 8, 4) 64δmin

7 P7 L32 C7(32, 4, 8) 128δmin

8 P8 2Z32 C8(32, 0,∞) 256δmin

the partition chain of the 4×4 Perfect Code with the identified
lattices and binary codes. The Perfect Code corresponds to the
lattice Z32 that is related to the universe code C0(32, 32, 1).

In the sequel, based on the useful binary lattices in [5], we
give an exemple to explain the identification of the sublattice
Λ4 corresponding to the subcode P4 for the partition level
k = 4. At this level, P4 = {XB4} and the sublattice Λ4 has
a determinant

det(Λ4) = det(Gram(T4)) = 232 = 2564

The Gosset lattice E8, the densest eight-dimensional lattice,
has determinant det(E8) = 256 and is related to the extended
Hamming code or Reed-Muller code RM(1, 3) = C(8, 4, 4)
as

E8 = 2Z8 + C(8, 4, 4).

On the other hand, for k = 4, we need 4k = 16 bits to
label the cosets of Λ4 and thus the binary code will be as
C2(32, 16, d =?). As a result, the lattice Λ4 can be seen as
the direct sum of four Gosset lattices E8 with the binary code
C4(32, 16, 4) the direct sum of four codes C(8, 4, 4). This
yields

Λ4 = E4
8 = 2Z32 + C4(32, 16, 4).

Since the binary code C4 is obtained as direct sum of four
codes, using the generator matrices of these component codes,
we derive the 32-dimensonal generator matrix G4 as block
diagonal of them. Therefore, we have

G(8,4,4) =

⎡

⎢⎢⎣

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

⎤

⎥⎥⎦ ,

G4 =

⎡

⎢⎢⎣

G(8,4,4) 0 0 0
0 G(8,4,4) 0 0
0 0 G(8,4,4) 0
0 0 0 G(8,4,4)

⎤

⎥⎥⎦ .

By proceeding similarly, we obtain the partition chain of
the Perfect Code P/P1/ . . . /P8 that corresponds to a partition
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chain of the lattices Z32/D4
8/ . . . /2Z32 related to a partition

chain of convenient binary codes C0/C1/ . . . /C8. The concept
of partition chain stems from the fact that these sequences of
codes and lattices can be considered as sequences of additive
groups where each group is a subgroup of the previous one.
Thus, the sequences are said to be nested yielding 8-level
partition chain where each code and each lattice is subcode
and sublattice of the previous one, respectively.

P ⊇ P1 ⊇ P2 ⊇ P3 ⊇ P4 ⊇ P5 ⊇ P6 ⊇ P7 ⊇ P8

Z32⊇ D4
8⊇ D8

4⊇ D6
4L

2
3⊇ E4

8 ⊇ D2
4L

3
8⊇ L4

8⊇ L32⊇ 2Z32

C0 ⊇ C1 ⊇ C2 ⊇ C3 ⊇ C4 ⊇ C5 ⊇ C6 ⊇ C7 ⊇ C8.

IV. PARTITION ENCODER

According to the theory of coset(lattice) codes, consider-
ing the integer binary lattices in the Perfect Code partition
Z32/Λk/2Z32, Construction A states that the lattice points of
Λk lie within the sequences of cosets of 2Z32 that are specified
by the linear binary codewords of Ck

Λk = 2Z32 + Ck ⇒ s = 2u + c. (13)

The lattices Λk are infinite; but in a transmission system,
Construction A bit-labels the lattice points within finite con-
stellations Λk ∩ B carved from these infinite lattices with
bounding region B of Q-QAM constellations. So that, any
constellation point s ∈ Λk ∩ B is a 32-dimensional vector
of information bits bi, divided into two parts b1 used for
2u ∈ 2Z32 ∩ B and b2 used for the binary codeword of Ck

as c = b2Gk. Then, the sublattice encoder of any perfect
subcode Pk as presented in Figure 1 is decomposed into:

- Coded bits of c that select one of the codewords of Ck.
- Uncoded bits of u that label the 2Z32 ∩ B points.

The 32-dimensional vector u = [u0, . . . , u32]T has integer
components whereas the binary codeword c = [c0, . . . , c32]T
has binary components ci ∈ GF (2) and should be lifted to
integers. They are then added modulo 2 to form the lattice
point s that is mapped to the perfect codewords.

+

Fig. 1. Sublattice Encoder

Given that the constellation point s carries 16 information
symbols in 4 × 4 transmission scheme, we assume that it
is labeled by 16q bits corresponding to q bits per Q-QAM
symbol, and hence B = B16

QAM. Therefore, we can divide this

bit label into q2 bits used to label the 2q2 codewords of Ck

and q3 bits used to label the uncoded bits of 2u.
In the partition Λk/2Z32, Λk is spanned into Nc =

|Λk/2Z32| cosets of 2Z32 that correspond to the 2k′
codewords

of Ck(n, k′, d). We have mentioned earlier that to label 16
cosets between consecutive lattices we need 4 redundant
bits. Consequently, the total redundancy of the partition is
r(Λk) = 4k, then k′ = n − 4k and q2 = k′ = 32 − 4k.

In addition, to label the uncoded bits of u, we note first
that q3 depends on the constellation size of B. Since we have
2q-QAM symbols, there are Q/16 = 2q−2 distinct points of
them that correspond to the pairs (2u2i, 2u2i+1) ∈ BQAM, i =
0, . . . 15, as the codeword vector c consists in 2-bits pairs.
Then, we need q3 = 16(q − 2) bits to label the vector 2u ∈
2Z32 ∩ B.

Recalling the exemple of k = 4, the perfect subcode P4

corresponds to sublattice E4
8 and binary code C4(32, 16, 4).

The partition encoder of P4 consists in labeling the symbols
s ∈ E4

8 ∩BQAM. Assuming 16-QAM modulation (q = 4), we
use

- q2 = 32 − 4 × 4 = 16 bits to select the codeword c of
C4 as c = b2G4

- q3 = 16(4 − 2) = 32 bits to label 2u in 2Z32 ∩ B
Therefore, we have q2+q3 = 48 information bits encoded with
E4

8 to obtain the 32-dimensional information symbol vector s.
Due to this bit labeling, we get the constellation points s =

2u + c, s ∈ Λk ∩ B of a perfect subcode Pk and accordingly,
the system model of the partitioned scheme is expressed

y = HRs + n = HR (2u + c) + n. (14)

V. NEW PARTITION STACK DECODER

A decoding scheme which turns to be optimal in [3] is to
use the Sphere Decoder (SD) to minimize the Nc = |Λk/2Z32|
squared euclidean distances in each coset i.e., to find for each
c of the 2k′

codewords of Ck the optimal u, then, to make a
decision on u with minimal distance

y
′

j = y −HRcj , j = 1, . . . , Nc, (15)

û = arg min
j

(
min

uj∈Z32
∥ y

′

j − 2HRuj ∥2
)
. (16)

However, the problem with SD is that it becomes exces-
sively complex when large number of antennas and higher
modulation size are involved. Besides, performing Nc SD
decoders is too complex for Golden partition and becomes
infeasible for 4 × 4 partition. To reduce this complexity, we
propose a new optimal approach for decoding partitioned
schemes with any dimension. It consists of jointly decoding
the vectors u and c by applying the Stack sequential algorithm
[6]. This algorithm lies in a tree search to find the best path
in terms of distance measure while using an ordered list of
paths referred to as stack.

A. Decoder Description
In order to expose the tree structure, QR decomposition is

performed on the combined channel and lattice matrix HR so
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that, the received signal can be written as

y1 = QT
1 y = R1(2u + c) + QT

1 n = R1(2u + c) + n1 (17)

We obtain R1 an upper triangular matrix, thus a tree search of
n = 32 levels can be used to solve the decoding problem. It
begins at level i = n and aims to find the leaf node at the last
level that has the least squared euclidean distance. We define
for this Stack decoder

- L as the list length of the stack
- Di at level i as the euclidean distance between the

received vector yi
1 = (yi

1, . . . y
i
n−1) and the lattice point

corresponding to the node (ui, ci) in the tree
- parent node at level i as the node (ui, ci) whose

path
(
(ui, . . . un−1), (ci, . . . cn−1)

)
in the tree gives the

minimal distance and thus is positioned at the top of the
stack since the stack is sorted in ascending order of the
euclidean distance D

- child node j at level i − 1 as the node (uj
i−1, c

j
i−1)

generated by the parent node (ui, ci) and that has the
path

(
(uj

i−1, ui, . . . un−1), (cj
i−1, ci, . . . cn−1)

)

The search process starts with a Stack list containing a
parent node whose path is empty and distance is set to zero
Dn = 0. At level i of the tree, child nodes (uj

i−1, c
j
i−1) are

generated from the parent node (ui, ci) and the only survivors
are those whose distance Dj

i−1 is lower than a predefined
threshold Dmin. So that the extended parent node is eliminated
from the stack and replaced by its surviving children. Then,
the Stack list is sorted yielding a new parent node at the top.
The process ends when a leaf node (i = 0) reaches the top
of the stack meaning that all intermediate nodes have higher
distances than this leaf node.

We also consider systematic structure of binary codes
Ck(n, k′, d) in the partitioned schemes, thus the stack com-
putational complexity is reduced since couples (u, c) are
generated until level n − k′ in the tree. For the remaining
levels, child nodes are generated with only ui varying and ci

calculated from the previous codeword components as

c =
[
[c0, . . . , cn−k′−1︸ ︷︷ ︸

k′ coded bits

, cn−k′ . . . cn−1︸ ︷︷ ︸
k′ info bits

]
]T

=
[
[b0 . . . bk′−1︸ ︷︷ ︸

k′ info bits

]
[
Pk′×(n−k′)

∣∣Ik′×k′
] ]T

. (18)

B. Accelerated Stack Decoding
The initial threshold Dmin is determined before the tree

search by applying a simple DFE detection on y1 and is
updated during the Stack search every time a leaf node is
reached. In addition, in order to approach the optimal solution
and accelerate the tree search, we use the Simulated Annealing
(SA) algorithm when the stack list reaches a given length
L = LSA. Simulated Annealing is a probabilistic algorithm
that provides good solution for complex optimization problem
in a fixed amount of time by trying random variations of the
current solution while avoiding local minima. In our case,
SA allows to optimize the initial solution obtained by the

DFE detector in order to get a tighter bound on D. The
SA is initiated when the stack is filled with LSA nodes and
only if the search process has not yet attained a leaf node.
Therefore, a new threshold Dmin is updated in an acceptable
duration by choosing conveniently the length LSA and the SA
parameters. Then all the tree branches with higher distance
D > Dmin are removed allowing to reduce the Stack list,
hence the complexity of the subsequent search phase.

C. Suboptimal Stack Decoding

Until now, all the procedures to speed up the tree search
do not affect the decoder optimality. However, suboptimal
version can be derived when the Stack list length is fixed.
In fact, limiting the stack intends to keep only the nodes
with the lowest distances, and to neglect the other paths in
order to free positions for the new inserted nodes. But, the
problem is that the neglected paths may include the correct
solution leading to an error in the decoding. Note that the
limit on the stack storage can be done either on the overall
list length Lmax or by restricting the lists on each level of
the tree Lmaxi . The parameters can be chosen appropriately
in order to compromise between complexity and performance
of the suboptimal decoding scheme.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the 4 × 4
Perfect Code and Golden Code partitions compared to the
uncoded systems using the proposed Stack decoder. In order
to have a valid comparison between both schemes, we should
maintain the same spectral efficiency. However, a rate loss is
induced in the partitioned schemes due to the code redundancy.
To compensate for this loss, a constellation expansion is
required meaning that the same number of bits is transmitted
with higher energy, thus higher modulation order is used in a
subcode compared to uncoded code. For instance, the constel-
lation points of the uncoded Perfect Code P are QAM symbols
carved from the infinite lattice Z32 such that s ∈ Z32 ∩ B′

whereas s ∈ Λk∩B for perfect subcodes. So, we need B ⊃ B′.
The asymptotic coding gain between partitioned and un-

coded schemes, with the same rate but different constella-
tion energies Es,1, Es,2 and different minimum determinants
∆min,1, ∆min,2 is defined in [2] as

γas =
Nr
√

∆min,1/Es,1

Nr
√

∆min,2/Es,2
. (19)

For simulations, we use 16-QAM modulation with the
subcodes and we assume that the constellations are scaled to
match Z[i] + (1 + i)/2. The average energy per symbol is
equal to Es = 0.5, 1.5, 2.5 for Q = 4, 8, 16, respectively.
Considering that the MIMO channel remains static during
a frame length of L = 100 codewords, we compare the
performances in terms of Codeword Error Rate (CER).

We perform four levels partition for the 4 × 4 code:

E4
8 = 2Z32 + (32, 16, 4), q2 = 16 and q3 = 32
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and two levels partition for the Golden Code:

E8 = 2Z8 + (8, 4, 4), q2 = 4 and q3 = 8

Preserving the same spectral efficiency for comparison, for 4×
4 case, 16-QAM with energy (Es,1 = 2.5) is used to encode
q2 + q3 = 48 bits with E4

8 while an 8-QAM is required with
the Perfect Code since 16q′ = 48, q′ = 3 bits, corresponding
to the spectral efficiency of η = 12 bpcu and the average
energy of Es,2 = 1.5. Likewise, for 2 × 2 case, 16-QAM is
required to encode 12 bits with E8 (4 redundant bits used for
the code), while the uncoded Golden Code requires only an
8-QAM. In both cases, 2u contains the 4-QAM symbols of B
with integer values {+1,−1}.

Figure 2 shows that the proposed Stack decoder achieves the
SD performance given in [3]. The 4×4 Perfect Code partition
allows a gain of 2.2 dB at BER of 10−3 compared to uncoded
scheme. The simulation gain is higher than the asymptotical
coding gain computed as

γas =
4
√

∆min,p/Es,1

4
√

∆min,u/Es,2
=

4
√

16δmin/2.5
4
√

δmin/1.5
= 1.2

(γas)dB = 10 log10(1.2) = 0.8dB.

This gap is related to the approximation of the Pairwise
Error Probability (PEP) leading to an approximate measure
of the coding gain [7]. This latter depends on the minimum
determinant over all pairs of distinct codewords according
to the design criteria of space-time codes [7]. However, the
minimum determinant is not necessarily the most frequent
between constellation points. Therefore, one should take into
account not only many minumum determinants but also their
numbers or probability of occurrence (multiplicities). Thus, the
dominant term in the PEP could correspond to higher ∆min

leading to higher gain than expected.
Figure 3 depicts the complexity of proposed Stack decoder

compared to conventional SD decoder with partitioned Golden
Code. The average search time of both algorithms is evaluated
versus signal to noise ratio Eb/N0 for 1 million transmitted
codewords. It can be observed clearly that the Stack decoder
converges much faster than SD for 2 × 2 dimensions. In
4 × 4 schemes, the 32-dimensional SD repeated 216 times is
impractible.

VII. CONCLUSION

We investigate in this paper the 4×4 Perfect Code partition
over slow fading channels. By set partitioning, we increase the
minimum determinant between perfect codewords, and thus
increase the coding gain and enhance the performance over
the uncoded scheme. Based on coset codes theory, we use
Construction A to identify the 8-level partition chain of the
Perfect Code subcodes with the corresponding sublattices and
binary codes. We propose a new optimal decoder for decoding
partitioned schemes with any dimension based on the Stack
sequential algorithm. We validate this decoder for the Golden
Code partition and show that it gives the ML performance
[3] while reducing considerably the complexity. For the 4× 4
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partition, we otain an interesting gain over the uncoded Perfect
Code. Therefore, this motivates us to study in future works the
Perfect Space-Time Trellis Coded Modulation design based on
this partitioning scheme.
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