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ABSTRACT

In this paper, linear precoding for non-orthogonal space time
block codes (STBC) is investigated. A theoretical model of
spatial correlation with a Laplacian distribution of AOA is first
derived. The design of the precoder is based on the choice of
the codeword error matrix according to a criterion. We pro-
pose here a new criterion based on the system outage proba-
bility to select the suitable codeword error matrix allowing to
move rapidly from one diversity order to the next. Codeword
selection points out the importance of the determinant and the
eigenvalues of the error matrices. The proposed method is ap-
plied to the non-orthogonal optimal STBC : 2×2 Golden Code
and 4× 4 Perfect Code.
Index Terms - MIMO Antennas, Space Time Coding, Correla-
tion, Linear Precoding, Perfect Codes.

I. INTRODUCTION

The Multiple-Input Multiple-Output (MIMO) systems use mul-
tiple antennas at the transmission side as well as at the reception
side which offers prospects to increase the capacity and to im-
prove the quality of service for wireless communications. But,
once faced to a real environment transmission, these systems
suffer from the spatial correlation problem which induces a di-
versity decreasing and a performances degradation compared
to a non-correlated environment.

Most of the space time code design criterions assume that
antennas are uncorrelated and that MIMO channel matrix en-
tries fade are independent which is not the case in practice. In
fact, MIMO antennas are normally correlated, due to the lack
of spacing between them and relating to the cone of arrival of
the multiple paths. Thus, the high predicted spectral efficiency
derived under the idealistic assumption that the channel matrix
entries are independent complex gaussian variables, might be
reduced on real channels. The effect of spatial correlation on
the MIMO channel capacity has been addressed in [1]. Ex-
isting works on MIMO Correlation problem have focused on
the effect of antennas separation, the angles spread of arrival,
antennas arrangement (linear, hexagonal..), and antennas con-
figurations ( broadside, inline..). They proved that correlation
problem becomes critical for small antennas separation and for
small angle spread.

Several channel models are developed to find the correlation
formulation. In [1], the one ring model was employed to de-
termine the spatial fading correlation of the channel where the

antennas array is surrounded by local scatters. In [2], a more
general model was used and scatterers are present at both ends
of the radio link and propagation is obstructed by a significant
number of local scatterers. In the channel model, the selection
of the angles of arrival (AoA) distribution describing the envi-
ronment is crucial. In [3] and [4], a gaussian distribution was
used. In the 3GPP MIMO channel [5], the laplacian distribu-
tion was adopted.

Recently works [6]-[7]-[8] proposed the use of linear pre-
coder at the transmitter to reduce correlation effect when space
time bloc codes are used. The precoder being calculated on
the basis of knowledge of the matrix of correlation in order
to minimize metric related to the error rate which is the pair-
wise error probability (PEP). Solution was derived in [6] for
orthogonal-STBC (OSTBC) exploiting the fact that the hermi-
tian product of the codeword error matrix is constant, which is
not the case for non-orthogonal codes. Indeed, the precoder de-
sign is related to the hermitian product of only one codeword
error matrix. Therefore, the performance could be enhanced
of some code words but reduced for others. In [7], a solution
was developed for the ABBA code, a Quasi-OSTBC. In [8], an
approximated solution was given based on average design over
all codeword error matrices.

In this paper, the 3GPP channel model [5] is addressed and
its correlation matrix is developed. The general linear precoder
solution proposed in [6] is used. A new criterion based on the
outage probability to find a rule for selecting the suitable code-
word error matrix for the precoder design is derived. The basic
idea is to choose the error matrix corresponding the best system
outage probability. This design is applied to the Golden Code,
which is a non-orthogonal optiml STBC. [9].

This paper is organized as follows. Section II describes the
adopted channel and the correlation matrix models. By the
way, a theoretical correlation form of a Laplacian distribution
of AoA is given. Section III derives the linear precoder solu-
tion based on the average PEP criterion. Non-orthogonal STBC
constraint was explored and methods to face this problem are
studied. Section IV presents the Golden Code and it was shown
how the appropriate codeword error matrix selection is crucial.
In section V, simulations results are provided and discussed.
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II. CHANNEL MODEL

A. General Description

Let’s consider a MIMO channel with a linear array of nT trans-
mit and nR receive antennas. The received signal is then de-
fined as

Y = HW + B, (1)

where H is the nR × nT channel matrix, Y is the received sig-
nal corrupted by an additive white gaussian noise denoted B
with covariance matrix σ2

b InR
, W is an nT × T codeword of

the STBC and T is the temporal codelength. We consider a co-
herent system, where the channel matrix is supposed perfectly
known at the receiver side.

Let’s assume that transmit and receive correlations are sep-
arable [3]. In such a case, an nR × nR correlation coefficient
matrix can be defined and denoted by S, for the receive an-
tennas and nT × nT correlation matrix denotes by R for the
transmit antennas. Thus the correlated MIMO channel matrix
can be represented as

H = S1/2HwR1/2, (2)

where Hw is an nR × nT i.i.d complex gaussian matrix with

zero mean and unit variance. Let S = S1/2S1/2H
and R =

R1/2R1/2H
.

In the following, only correlation at the transmitter will be
taken into account. Thus, the channel model in this environ-
ment is reduced to

H = HwR1/2. (3)

Only the correlation matrix is assumed to be known at the
transmitter side.

B. Correlation Model

Let’s assume ρik the correlation coefficient between the ith and
the kth transmitter antenna array elements. They are obtained
using the components of the channel matrix

ρik =
1√
βiβk

rik, (4)

where rik = E
[∑

j hijh
∗
kj

]
and βi = rii is the normalized

average power in the ith receive branch.
The theoretical adopted form of rik is given by [3]

rik =

{ ∫ σ/2

−σ/2
exp−j2π

dik sin θ

λ p(θ)dθ i 6= k

1 i = k
(5)

here p(θ) is the pdf of the direction of arrival, σ is the receive
angular spread and dik = (i−k)x, where x is the separation be-
tween two consecutive antenna elements. The Power Azimuth
Spectrum (PAS) of a path arriving at the MS is modeled as a
Laplacian distribution for the 3GPP MIMO channel [5]. For an
incoming AoA θ̄ and RMS angle spread σ , the MS per-path
Laplacian PAS value at angle θ is given by

P (θ, σ, θ̄) = N0exp

[
−
√

2|θ − θ̄|
σ

]
, (6)

where N0 is the normalization constant and is given by

N−1
0 =

∫ +∞

−∞
exp

[
−
√

2|θ − θ̄|
σ

]
dθ. (7)

In (6), θ and θ̄ are given with respect to boresight of the antenna
elements [11]. To establish theoretical form of correlation with
laplacian distribution, and in similar way to [12], one can prove
that

ρ(x, θ̄, σ) = E
[
e−j 2π

λ x sin(θ+θ̄)
]

= N0

∫ +∞

−∞
e−j 2π

λ x sin(θ+θ̄)e−
√

2
|θ|
σ dθ (8)

If σ is small the approximation sin(θ+ θ) ' sin(θ) + θ cos(θ)
can be made and one can get

ρ(x, θ, σ) =
2e−j 2π

λ x sin θ

2 + [ 2π
λ σx cos θ]2

. (9)

III. LINEAR PRECODING

A. Pair-wise Error Probability

One way to resolve the correlation problem is the use of linear
precoder which operates on the space-time coded symbols. The
design of this precoder assumes the knowledge of the trans-
mit correlation. The PEP is the error probability of deciding
the codeword Wk instead of the transmitted codeword Wj .
The codeword Wj estimation is given by an ML minimization.
Let’s denote E the error matrix defined by E = Wj −Wk and
P the linear precoder to be added at the transmitter. The pre-
coder includes linear transformations to adapt codewords to the
available channel. The received signal is then defined as

Y = HPW + B. (10)

Following steps in [10], PEP between Wk and Wj can be upper
bounded by

PEP (E) ≤
[
det

(
I +

Es

4σ2
b

R1/2PEEHPHR1/2H
)]−nR

,

(11)
where Es is the symbol energy . The optimal precoder that
minimizes the PEP is the solution of the following optimization
problem [6]

max
P

J = det

(
I +

Es

4σ2
b

R1/2PEEHPHR1/2H
)

(12)

subject to :
Tr

(
PPH

)
= p0, (13)

where (13) constrains the total power across nT transmit an-
tennas to p0. This problem has a water-filling solution. In
fact, by defining the singular value decomposition of R1/2 =
URΛRVH

R and EEH = VEΛEVH
E , the solution is [6]

P = VRΦVH
E , (14)
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with

Φ2 =

[
µI−

[
Es

4σ2
b

]−1

Λ−2
R Λ−1

E

]
+

, (15)

where µ is the water-filling constant and [.]+ means max(., 0)
From this result, it follows that in the presence of transmit

correlation, the geometry of the codeword difference matrices
E could have deep impact on the performance.

B. Orthogonal Codes Precoding

Orthogonal space-time codes have EEH = βI, in which case
ΛE = βI and VE = I, where β is a scalar. The rotation matrix
VR ensures that the optimal precoder pours power only over
eigenmodes of R. Then, the precoder solution can be simplified
to get this form

P = VRΦ (16)

Φ2 =

[
µI−

[
βEs

4σ2

]−1

Λ−2
R

]
+

(17)

In such a scenario, the optimal precoder can be considered as a
statistical eigenbeamformer. One can remark that precoder (16)
doesn’t depend on couples of codewords error E. The precoder
enhancement for an orthogonal code can be observed on the
Alamouti code. This code is optimal for nT = 2, nR = 1.
Figure 1 shows the bit error rate (BER) for the i.i.d channel
coefficients case, the case with correlation and with precoding
as a function of the SNR, the correlation term is equal to 0.9.
The Precoding gain is obtained spatially at low SNR where the
transmission uses only one eigen mode. But for high SNR,
improvements are not distinguished because of the waterfilling
behavior.

Figure 1: Alamouti in Correlated Channel with ρ = 0.9 for
QPSK

C. Non-orthogonal Codes Precoding

For the non-orthogonal codes the property EEH = βI is not
verified. The power allocation on the eigenmodes of R given
by the waterfilling policy, depends on the eigenvalues of E and

R. One can look then for the effective minimum distance er-
ror matrix among all possible codewords and select codewords
having the minimal determinant. This solution proposed in [6]
gives as result many codewords verifying this condition.

The upper bound (11) depends on the codeword error matrix
EEH and choosing one E can enhance the performance for the
couple of codewords (by minimizing their PEP upperbound)
but degrade other couples. In fact, and as explained in [7], if
Emin is a code error matrix with minimum determinant, then
EminEH

min is not unique. For example, E1 and E2 can have
the same minimum determinant but E1EH

1 and E2EH
2 are dif-

ferent. Minimizing the averaged PEP for one of them doesn’t
ensure the performance of the others and it can even degrade
the precoder performance instead of improving it. To resolve
this problem, two solutions already exist on the letterature, and
we propose here a new one.

1) Medles method

Medles et al. define in [7] a set of non-zero code error matrices
Ω = {p, q : E(p, q) 6= 0}.
Then, another set Ω1 is defined as Ω1 ={

A/A ≤ EEH ,∀E ∈ Ω
}

.
Where for A1 and A2 twoN ×N complex matrices : A1 ≤ A2

if and only if for all v ∈ CN vHA1v ≤ vHA2v.
Let’s Υ = sup (Ω1), the supreme matrix of the set Ω1. Then,
if Υ is non-zero, the property :

A1 ≥ A2 ≥ 0 ⇒ det (A1) ≥ det (A2) . (18)

This property can be used to prove that Υ minimizes the upper
bound of the PEP[7] .

2) Paulraj method

An average design solution was proposed in [8]. Instead of
employing the worst case analysis where E corresponds the
minimum distance over all pairs of codewords, another design
based on the average distance over all pairs of codewords was
considered. Denoting G = EEH , and in the average context,
the average distance measure of B is

Ḡ =
1
T
E

[
(W− Ŵ)(W− Ŵ)H

]
, (19)

whereE[.] means the expectation over all possible codeword
pairs. Ḡ represents the covariance of codeword error statistics
over all codewords. The detection is done jointly over T sym-
bol times.

The error bound is monotonic in G [8]. Compared to the
minimum distance criterion the average distance Ḡ gives a
smaller value in the bound . Even if this does not guarantee
a minimum precoding gain, it leads to a valid precoder. Of-
ten Ḡ is a scaled identity matrix which is not the case for the
minimum distance G with non-orthogonal STBC.

The advantage of this design is that complexity is reduced
with a minimum gain. Even if precoding performances de-
creases, this method seems to be very useful specially for high
constellation sizes where the search of the minimum codeword
error matrix is too complex.
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3) Proposed method

To select the codeword error matrix, the outage probability is
studied. Let’s consider the following linear system

Y = HPMX + B (20)

where M is the linear space time coding matrix, X is the con-
stellation symbols matrix and P is the precoding conditioned
on one fixed error matrix E.

The outage probability is defined as

Pout(R) = P (C(H) < R) (21)

where the capacity is

C(H) = log2

[
det

(
In +

Es

4σ2
HwR1/2PMMHPHR1/2H

Hw
H

)]
.

(22)
The outage probability represents the lower bound of error
probability for the coding system. Increasing system diversity
can reduce this lower bound providing a relevant enhancement
in performance. For low SNR, the precoder (16) proceed as
a beamformer which reduces enormously the system diversity.
Thus, we need a new criterion to build P, leading to a quick
move to more diversity. One can select the codeword that ver-
ify criterion among the codewords with minimum determinant.
The difference between the eigenvalues of the codeword should
be the least possible. Thus, waterfilling will rapidly stop beam-
forming and will move to higher diversity.
Let’s ε be the minimum determinant of EEH and let

Γ =
{

Ei : Ei 6= 0,det
(
EiEH

i

)
= ε

}
(23)

be the set of codeword error matrices verifying the mini-
mum determinant ε. For each En ∈ Γ, the hermitian matrix
EnEH

n has the following eigenvector decomposition EnEH
n =

VEn
ΛEn

VEn
where ΛEn

= diag (λn1, ..., λnN ). Without loss
of generality the eigen values are assumed to be ordered in the
decreasing order. Let

δl
n = |λnl − λn(l+1)| (24)

be the absolute value of the difference between two successive
eigenvalues.

The codeword matrix error Ek ∈ Γ leading to a quick move
from the diversity order nR to 2× nR is the one that verify

δ1k = arg min
En∈Γ

δ1n. (25)

Of course, this minimization could have many solutions but
the outage probabilities of all possible solutions have the same
behavior at the considered diversity order. In general, to move
from the l × nR diversity order to (l + 1) × nR, one can se-
lect from the set of minimum determinant codewords the ones
verifying

δl
k = arg min

En∈Γ
δl
n. (26)

The proposed method is applied to find the suitable precoder
for the 2× 2 Golden Code and for the 4× 4 Perfect Code.

IV. A 2× 2 GOLDEN CODE AND 4× 4 PERFECT CODE
LINEAR PRECODING

A. Golden Code

The Golden Code is a (2 × 2) Space-Time code [9] which
codewords entries are linear combinations of QAM informa-
tion symbols s1, s2, s3 and s4. W has the following form

W =
1√
5

[
α(s1 + γs2) α(s3 + γs4)
iᾱ(s3 + γ̄s4) ᾱ(s1 + γ̄s2)

]
, (27)

where γ = 1+
√

5
2 , γ̄ = 1−

√
5

2 , α = 1+i−iγ and ᾱ = 1+i−iγ̄.
The vectorization of the received vector leads to :

YnRT =
1√
5

[
H 0
0 H

]
α αγ 0 0
0 0 iᾱ iᾱγ̄
0 0 α αγ
ᾱ ᾱγ̄ 0 0



s1
s2
s3
s4

 + BnRT

=
1√
5

H̃MX + BnRT , (28)

where H̃ is the duplicated channel matrix, M is the matrix of
Golden Code and X is the vector of information symbols.
The Golden Code has the following properties:
- Full-diversity: equal to 4
- Full-rate : 2 symbols by channel use.
- Non-vanishing determinant for increasing spectral efficien-
cies equal to 1/5.
- Optimal for the Diversity Multiplexing-gain trade-off.

In the following, we choose two error matrices having both
the minimum determinant for the QPSK constellation. Their
vectorial form is

E1 =
1√
5

1√
2

M
[

0 0 0 −2i
]T

(29)

and

E2 =
1√
5

1√
2

M
[
−2 + 2i 0 0 −2

]T
(30)

The absolute value of the eigenvalues difference is δ1 =
8.9443e − 001 for E1 and is δ2 = 5.7271 for E2 . The new
criterion to select the best codeword difference among those
having the minimum determinant is necessary. In figure 2, the
outage probabilities of the system using the precoders based on
the error matrices E1 and E2 are plotted. One can remark that
the outage probability for the case withE2 based precoding has
a diversity of 2 for low SNRs (Precoder rank equal to 1) then
the slope of the outage curve changes at 14dB and diversity
becomes 4 for high SNRs. However, using for E1 based pre-
coding the diversity slope changing is done earlier.



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’07)

Figure 2: Outage Probability for the Golden Code

B. The 4× 4 Perfect Code

A Codeword of the 4 × 4 Perfect Code can be written in this
form[13]

W =
1√
15


v1 v2 v3 v4

νψ(v1) ψ(v2) ψ(v3) ψ(v4)
νψ2(v1) νψ2(v2) ψ2(v3) ψ2(v4)
νψ3(v1) νψ3(v2) νψ3(v3) ψ3(v4)


(31)

where ν = i, vk =
∑4

l=1 Sk,lφ
l−1 and Sk =

(Sk1, Sk2, Sk3, Sk4)T , k = 1, ..., 4 are vectors composed of
16 information symbols. φ is defined as φ = ζ15 + ζ−1

15 =
2cos( 2π

15 ) where ζ15 = exp( i2π
15 ) is the 15th root of unity. The

function ψ is

ψ : ζ15 + ζ−1
15 7−→ ζ2

15 + ζ2
15
−1 (32)

As for the case of Golden Code, received codeword is repre-
sented in vectorial form.

V. SIMULATIONS AND RESULTS

AoD (Angle of Departure) data provided with the 3GPP MIMO
channel specifications [5] are used. It’s assumed that each path
is constituted of 20 sub-paths with a non frequency selective
channel. A unit power for the path of interest with shadow fad-
ing equal to 1 are considered, and one can focus on the quasi-
static case. Antennas have a linear arrangement and broadside
orientation. The mean of AoD is 22.5 degrees and the angle
spread is 35 degrees. The AoDs are generated with a Laplacian
distribution [5]. The correlation matrix R is Toeplitz and can
be written as

R =
[

1 |ρ|
|ρ| 1

]
(33)

The maximum likelihood decoder is used for QPSK modu-
lation (Sphere Decoder). Simulation results are obtained by
averaging over 2000 independent Monte-Carlo trials where

each burst consists of 100 data symbols. The correlation term
is equal to |ρ| = 0.9. In figure 3 the bit error rate (BER) for

Figure 3: Golden Code precoding with two different codeword
error matrices for QPSK

the precoders based on the two errors matrices E1 and E2

are plotted as a function of the SNR. Although both of them
verify the minimum determinant, they don’t provide the same
performances. More over, at high SNRs the E1 BER are lower
than those of the system without precoding this is due to the
lack of diversity (transmission on only one eigen mode).
During beamforming, only one row of Golden Code codeword
is transmitted which makes a rank deficiency for the decoder.
To face this problem, one can send only diagonal elements of
codeword W instead of one row. This can reduce code rate
since only two symbols are sent. To keep the same spectral
efficiency one can adapt modulation and then the same rate is
gotten.

Figure 4 shows the bit error rate (BER) for the i.i.d case, the
cases with correlation and with precoding using a codeword
error matrix verifying the proposed criterion. Our method and
Paulraj one have the same results. This is expected since their
outage probabilities are the same. These methods outperforms
Medles selection which doesn’t take into account the diversity
influence. For 2 × 2 case the average design precoding
is clearly simpler to obtain with a satisfying performance.
However, this could not be the optimal solution for systems
with higher number of antennas.

To prove this, one can focus on 4 × 4 Perfect Code. Simi-
larly, we assume a channel in accordance with the 3GPP MIMO
channel specifications [5]. The correlation matrix R is 4 × 4
Toeplitz matrix and can be written as

R =


1 |ρ1| |ρ2| |ρ3|
|ρ1| 1 |ρ1| |ρ2|
|ρ2| |ρ1| 1 |ρ1|
|ρ3| |ρ2| |ρ1| 1

 (34)
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Figure 4: Golden Code in Correlated Channel with |ρ| = 0.9
for QPSK

For simulations, we fix correlation to the following values :
|ρ1| = 0.9, |ρ2| = 0.7, |ρ3| = 0.5. Figure 5 compares Paulraj
precoding and proposed precoding. In the proposed precoding,
to build precoder, an error matrix E is selected from the set
of minimum determinant matrices and E verify the proposed
criterion. Figure 5 shows clearly that the proposed precoding
outperforms the Paulraj average design precoding. A gain of
more than 1dB can be noticed for SNR = 6dB.

Figure 5: A 4×4 Perfect Code in Correlated Channel for QPSK

VI. CONCLUSIONS

Linear precoding for the non orthogonal STBC for MIMO cor-
related channel was addressed in this paper. It was shown how
crucial is the choice of the code error matrix. A method for
selecting this matrix was proposed. It is based on selecting
the matrix having the minimum determinant and permitting to
moving rapidly to higher diversity order as the SNR increases.
This method was compared to Paulraj and Medles methods for

2x2 Golden code. The proposed method outperforms Medles
ones but give same results as Pauraj for the Golden Code. Com-
parison was also held for 4 × 4 Perfect Code and results show
clearly that proposed method is much better than the Paulraj
average design.
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