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Abstract— In this paper, we investigate the use of soft output
decoders for signals transmitted on linear channels when applied
to multiple input multiple output (MIMO) systems. A new soft
output MIMO decoder is proposed. It’s an extension of the hard
stack decoder. A straightforward idea was to exploit internal
nodes still stored in the stack at the end of hard decoding process
to calculate LLLR. We show that the potential gain of such method
is rather large then classical soft decoders.

I. INTRODUCTION

Increasing the number of antennas at both transmitter and
receiver sides augment the capacity approximately linearly
with the number of antennas, assuming ideal propagation.
MIMO transmission introduces new perspectives and potential
impacts to wireless communication. The cost of this gain is
the system complexity required for the decoder in the receiver
side.

Many kinds of MIMO detectors are in use today. In this paper,
we exploit the suitable structure of the stack algorithm to
provide a soft output, required when STBC are concatenated
with error correcting codes. One can list the most current
output detectors:

e Sub-optimal output decoders: (e.g., Zero Forcing: ZF)
or non-linear equalizers (e.g., Decision feedback Equalizer:
DFE).

e Maximum likelihood output decoders: e.g., lattice decoders
(like sphere decoder (SD) and Schnorr-Euchner algorithm
[1], [2], [3]) are proposed to achieve ML performance with
reasonable complexity.

e Sequential decoders: The decoding problem is converted to a
search inside a tree under a constraint of cost. The most known
sequential decoders are Fano decoder [4] and stack decoder
[5], [6], [7]). These algorithms have the advantage of flexibility
since one can choose a performance-complexity tradeoff. In
addition, the stack algorithm has a suitable structure to provide
a soft output, required when STBC are concatenated with error
correcting codes .

II. STACK DECODING

Consider a MIMO system that has M and /N antennas at
the transmitter and the receiver respectively. Considering an
uncoded MIMO scheme, the receive signal block is
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s¢ is the transmit symbol vector. H® is the channel matrix
and n° € N(0,0%I) is an Additive White Gaussian Noise
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(AWGN). Assuming an uncoded system with M = N, real
and imaginary parts separation leads to the following matrix

equation
= 3w w3 || 5 ]
= Hs+n 2

For the coded MIMO scheme,we get the same model given
in equation (2) for the uncoded scheme.

Let’s p = 2M denoting the dimension of the real Euclidean
space. The decoding problem can be converted to a search
problem inside a tree using the stack decoder which uses the
strategy of BeFS (Best First Search [6]). Let’s first expose
the tree structure of the problem.

A QR decomposition is made to H, H = QR, where Q is
orthogonal and R is upper triangular. After multiplication of
both equation sides by Q' the upper triangular nature of R
means that a tree search can be used to solve the search for
the closest point in the lattice. The tree has a maximum depth
p, and the goal is to find a leaf node s = [sp,..., sk, ..., s1]
-where k is the level of the node s; in the tree- that has the
least squared distance min|ly — Hs||%.

Visiting all leaf nodes to find the one with least distance is
very complex or impossible to do, as with lattice decoding
or high constellation size. An optimal search strategy should
be adopted. The stack algorithm is a tree search algorithm
which uses the strategy of BeFS (Best First Search [6])
decoder. beginning, the decoder is in the root node. The
decoder generates the children nodes and stores them
in the stack. Nodes are ranked in increasing order with
their costs. Let’s ’top’ be the node with the least cost
(best-cost). The algorithm generates the children nodes of
top’ and deletes ’top’ from the list. The algorithm ends
when the solution vector is found. (The size of ’top’ is equal
to the depth of the tree: leaf node reaches the top of the stack).

III. SOFT DECODING

In this section, soft output detection for signals transmitted
on MIMO linear channels is investigated. We are interested
here to the stack decoder which offers an interesting structure
to provide a selected list. Soft Output MIMO decoding prob-
lem was studied before, and some solutions to this issue have
been proposed in [9] [10] and the so called ’list’ or ’candidate
list” was introduced. The most well-known soft-output lattice
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decoder for MIMO systems is list sphere decoder (LSD).
Soft decoding can be realized using a posteriori probability
(APP) techniques. The APP techniques are a judicious choice
for high performance receivers with reasonable complexity.
Maximizing the APP for a given bit minimizes the probability
of making an error on that bit. The APP is usually expressed
as a log-likelihood ratio (LLR) value. A decision is made from
a LLR value by using its sign to tell whether the bit is one or
zero. The magnitude of the LLR value indicates the reliability
of the decision. LLR values near zero correspond to unreliable
bits. In the following, the logical zero for a bit is represented
by amplitude level x;, = —1, and logical one by z; = +1.
The modulator maps each layer of the bits into data symbols
through the mapping f : {—1,+1}**Z — €, where € denotes
the data symbol constellation and B = log, |€| is the number
of bits represented by each data symbol. Let’s K denote the
number of symbols belonging to each codeword transmitted in
each channel use. The LLR of the i*" bit, where i € [1, BK],
is defined as

P(b; = +1]y,H)
P(bi = 1|y, H)’
One can assume equal probability for each data bit (an

interleaver at the encoder can be used to scramble bits). Using
Bayes theorem, the bit metric can be written as

> bep, ,, L(ylb,H)
0g s
ZbeDiy,l P(y[b,H)
where D; 1 and D; _; are the set of 28K~ bit vectors b

with b; being +1 and —1, respectively. Equation (4) can be
written as

LLR(b;) = log 3)

LLR(b;) =1 4)

o~ = lly-Hs(b)|?

LLR(bL) _ IOg Zb€D1,+1
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In order to reduce the corresponding computational complex-
ity, one can employ the max-log approximation [11] to get

min iy — Hs(b)|[* — min ||y~ Hs(b)][*
bep; beD; 11

Soft-Output detection on MIMO channels can be achieved via
an exhaustive list as in [8] or a limited size list of spherical
shape as in [9] and [10]. The APP detector based on an
exhaustive list has a relatively large complexity exponential
in the number of transmit antennas and the number of bits
per modulated symbol. In other hand, a non-exhaustive list
APP detector is sub-optimal but has a low complexity which is
proportional to the list size. Several list decoders were already
proposed.

o2

A. List Sphere decoder (LSD)

An exhaustive search needs to examine all constellation
points. The sphere decoder avoids an exhaustive search by
examining only those points that lie inside a sphere with a
given radius r centered at the received point.

The performance of the algorithm is closely tied to the
choice of the initial radius ». If r is chosen too small, the
algorithm could fail to find any point inside the sphere
requiring that r be increased. However, the larger r is chosen,
the larger the search will spend time. In [10], a simple
modification to the sphere decoder was introduced. In [10],
the proposed LSD generates a list £ of N, points . These
points make ||y — Hs||> smallest, among all points inside the
sphere.

The list, by definition, must include the ML point. To create
L, the sphere decoder needs to be modified in two ways :
when a candidate is found inside the sphere, the radius r
should not be reduced. In addition, the candidate should be
added to the list if one of the following conditions is satisfied
: either the list is not full or at least one candidate in the
list has a higher cost than the new candidate. In this last
case, the new candidate replaces the one having the large
euclidian distance with the received point. Every time it finds
a point inside the initial radius r it : 1) does not decrease r
to correspond to the distance of this new point to y ; 2) if
the list is not already full adds this point to £ ; if not ( £ is
full), it compares this point with the point in £ having the
largest euclidian distance to y and replaces this point if the
new one is better.

Thus, the constructed list contains the ML point and N, — 1
neighbors for which the square error is smallest. The soft
information about any given bit xj, is essentially contained in
L because if there are many entries in £ with x;, = 1 then it
can be concluded that the likely value for z is indeed one,
whereas if there are few entries in £ with z; = 1, then the
likely value is minus one. A larger radius r generally allows
for larger N,, which makes the list more reliable.

There is also a tradeoff between the accuracy and the speed
of the list sphere decoder. Finding IV, points is generally
slower than just finding one point because the search radius
always stays fixed and does not decrease with every found
point.

One problem of this algorithm is the variable number of
points in the list. In[10], a radius function of the desired
number of points was given. The number of visited points
before reaching the ML point can’t be fixed exactly. To choose
the initial radius, one ideal radius was proposed in [10]. In fact,
it was noted that

[ly — Hs|* = |In||* o*x3,, (©)

where 3 n, is a chi-square random variable with 2V, degrees
of freedom. The expected value of this random variable is
0?E[x3y,] = 20°N,,. One possible choice of radius is

2 =20%N, -y (- HEH) 'H)y ()

Where ¢ > 1 is chosen so that one can be reasonably sure,
as measured by a confidence interval for the 3 n, random
variable, that the true s will be captured. Depending on the
size of N, one may increase this radius by some multiple of
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the lattice covering radius (or its approximation).

The important weak point in the LSD proposed decoder is
the instability of list size. The number of visited points before
reaching the ML point can’t be fixed exactly, only an approx-
imate number can be provided. The sphere radius is selected
to give nearly the needed number. Also, the constructed list is
not centered at the ML point. A shifted Spherical List Decoder
was proposed in [9] to resolve this problem.

B. Shifted Spherical List Decoder (Shifted SD)

This APP detector starts by applying a sphere decoder to
find the ML point. Then a spherical list centered around the
ML point is built. This list depends on the ML point position
and the channel state. The trick behind this idea, is to center
the spherical list £ on the ML point instead of the ZF point.
The figure (1) shows the sphere centered on the ML point
compared to the one centered on the ZF point. Usually the

° ° ° ° °
Sphere centered on ML point

ML point &Lf o e \ ° °

/ ~

Received point

° ° ° ® Sphere centered on received point

Fig. 1. sphere centered on the ML point and the sphere centered on the
received point

received point y is outside the constellation specially when
considering big dimensions. The sphere decoder centered on
the received point visited a lot of lattice points to find a
small number of constellation points. In other hand, when the
sphere is centered on the ML point the number of enumerated
points is reduced and high likelihood constellation points are
more considered. But to guarantee a high stability for the
number of points required in the list, one should be careful
for the choice of the shifted list radius. This radius should
take into account the number of points to create the list. In
[10], an approximation was made : the volume of the sphere
containing N, points is equal to the volume of V), fundamental
parallelotopes. As result, the radius r was approximated by :

1
[ Np xwol(A)\*
re ( = ) : ®)
where vol(A) = |det(H)| and V is the unit radius sphere
volume in the real space RP, V' = ’TW This method has the
disadvantage of being stable only for high values of N,,. If we
assume Ny the effective number of points found inside the list
L. One can check that

2= ©)

But when considering a finite constellation, Ny will diminish
because of the limited shape of the intersection between

the sphere and the constellation. This depend on the ML
point position inside the constellation and the shape of this
constellation. As result, the radius r of the shifted spherical
list for the constellation can be given by

. (a[nhyp] X iy X Np X vol(A))ll‘
= % ,

where « is an expansion factor of the list size which de-
pends on the number of hyperplanes 7, at the constellation
boundaries passing through the ML point. y, is an additional
expansion factor on the shape of the constellation [9]. The
weak point of this algorithm is the need to fix a radius given
the number of candidates.

(10)

C. New Soft Stack Decoding

We propose here an extension of the stack decoder to get
soft information output. We have modified this algorithm to
generate soft-output information in the form of LLRs. Stack
decoder has the capability of generating a candidate list. In
each iteration, children nodes are generated and stored in the
stack ordered as a function of their costs. At the end of the
algorithm, the first leaf node reaching the top of the stack is
the ML point. In this work, we improve the stack algorithm to
make it suitable for a soft output by constructing a list instead
of only ML point. In fact, after the end of the process, one can
remark that stack is still full of nodes with different sizes and
no one among them is reaching the top of the stack. The most
straightforward idea is to extract the ML gotten point from
the original stack, to put it in another stack and to continue
the searching phase. The following point reaching the tree
depth size is also removed and putted in the second stack
with its corresponding cost. There’s two possibilities to stop
the algorithm :

e Either we fix the number of points in the list. In
this case the algorithm continues in this manner
until the second stack will be full.
e Another possible criterion is to fix a lower bound
on nodes cost, and when the cost falls below this
limit value, the algorithm gives up.

Thus, only nodes stored in the second stack will contribute
to the soft decision. The second stack is then reordered in a
descending order of metrics which are used later to generate
LLRs. The main advantages of this algorithm are

e Stability : the algorithm will stop as soon as the
number of candidates is reached. The issue regarding
the estimation of the ideal radius value is removed.
e The list is centered at the ML point. In other words,
the list is filled up with closest points only, in an
ascending cost order, thus leading to an optimal LLR
computation for a given list size.

e Low complexity, since we only pursue the stack
algorithm, with no additional search method, and
exploit nodes already computed and still in the stack.
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Fig. 2. LLR Density Distribution for SNR=0 dB and SNR=3 dB

IV. SIMULATIONS AND RESULTS

In this section, we illustrate the application of the new soft
decoder for MIMO Space time transmission. Figure(2) shows

Data Conv. Modul Space — Time
— Encoder > odulator | g
Source Encoder
Soft
Space — Time Viterbi Data
Decoder Demodulator > Algorithm Sink

Fig. 3. Diagram of transmitter and receiver with soft space time decoding

the LLR distribution of the candidates found inside the stack
for SNR = 0 and SNR = 3dB. It can be observed that
when SNR increases the LLR distribution curve is going to
get a concave shape with a cavity around zero. This can be
expected since zero — LLR means ambiguity in the decision
which is diminished when SNR increases.

For high SNR, LLR stretches to infinity and in practice it’s
saturated to a high chosen value. The LLR distribution curves
provide us with information about the intervals to which LLRs
belong. LLRs will be sampled into 2”* — 1 levels of their
interval distribution and then quantized to m bits to serve as
input for the soft input viterbi.

Figure (3) shows the diagram of simulated transmitter and
receiver. We consider a % rate convolutional code modulated
by 4 — QAM constellation.The generator code G = (7, 5) (in
octal notation) has the memory of 7' = 3. Two transmitting and
two receiving antennas are used and symbols are multiplexed.
In the reception side, for soft input viterbi decoder, LLR are
provided by the space time decoder using a list of candidates.

Figure (4) shows a comparison between different soft de-
coders. For a list of 6 candidates, the soft stack decoder out-
performs other decoders in term of performance and exhibits
a gain over 1dB compared to the Shifted SD. The achieved
improvement is up to 2 dB compared
to the LSD.

The stack decoder is more flexible for increasing stack size
and the algorithm can continue running to get more candidates
which is not the case of the LSD and the SSD which are
constrained by the chosen radius.

In figures (5) and (6), we plot the number of comparisons
and multiplications needed to decode one symbol. As might
be expected, the soft stack decoder enjoys an advantageous
average complexity compared to the Shifted SD. However,
it’s outperformed by the LSD in term of complexity but the
performance of this later is worse.
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