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Abstract

We present a very efficient lattice reduction tool for alge-
braic lattices by using the matrix representation of units in
number fields. This algorithm requires a careful study of the
so-called “logarithmic lattice”. From this algorithm, very
efficient suboptimal decoders can be derived on fast fading
channels.

1. Introduction

Orthogonal or unitary linear precoders are known to
bring diversity to a communication system on a fast fad-
ing channel. This kind of diversity is known as “modula-
tion diversity” [1]. In order to decode such a system, we
need a lattice decoder [2]. But this decoder can become
very complex to implement when the dimension of the pre-
coder increases. In order to simplify it, one may use lattice
reduction for fast fading channels [3] as well as for MIMO
channels [4]. The most popular of all reduction algorithms
is the so-called LLL algorithm [5]. This algorithm may be
used for every lattice. We specialize to the case of algebraic
lattices constructed from number fields and present a new
reduction algorithm, with a huge reduction in complexity
when compared to the LLL.

2. Notations, assumptions and system model

2.1. Notations

Our system uses QAM (complex case) or PAM (real
case) constellations. Each QAM (resp. PAM) signal is de-
noted xi. The vector of QAM (PAM) signals has length n

and is denoted x = (x1, x2, · · · , xn)
>. We do not consider,

in this paper, the shaping problems which can be solved by,
for example, with modΛ precoding [6]. So, we assume that
the transmitter sends a point x of Z[i]n in the complex case
or Zn in the real case. We use a linear transform Φ to intro-
duce diversity, which is a unitary matrix (for the complex
case) or an orthogonal one (for the real case). The channel

matrix is assumed to be a diagonal i.i.d. matrix,

H = diag [h1, h2, . . . , hn] (1)

known at the receiver (perfect CSI). Finally, the noise is
an n−dimensional vector b of i.i.d Gaussian variables. To
summarize, the received signal is

y = H · Φ · x + b (2)

2.2. Number theory bases

In all the paper, Q is the field of rationals with its ring
of integers Z, Q(i) = {p + iq|p, q ∈ Q} (i =

√
−1) is the

field of rational complexes with its ring of Gaussian integers
Z[i]. In the real case, we use F = Q as the base field and in
the complex case, we use F = Q(i) as the base field.

Now, let θ be an algebraic number of degree n on F. Let
K = F(θ) be the smallest field containing F and θ. GalK/F

is the Galois group of automorphisms on K with elements
denoted σi, i = 1, . . . , N . We assume in the following that
the extension F(θ) is Galois, which means that N = n.

OK is the ring of integers of K and for each α ∈ K we
define two quantities

• The trace of α, TrK/F(α) =
∑n

i=1 σi(α) ∈ F

• The norm of α, NK/F(α) =
∏n

i=1 σi(α) ∈ F

Units of OK are algebraic integers which are invertible in
OK. Then, their norms are units in OF. For example, if
F = Q, then units of F are 1 and −1.

2.3. The structure of matrix Φ

We assume, in this paper, that Φ = [φi,j ] is an algebraic
unitary (orthogonal) matrix (see [7, 8] for details). That
means that this matrix is constructed with algebraic num-
bers in K. In fact, all elements φi,j are algebraic integers,
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φi,j ∈ OK. The structure of Φ is the following,

Φ =
1√
n











σ1 (θ1) σ1 (θ2) · · · σ1 (θn)
σ2 (θ1) σ2 (θ2) · · · σ2 (θn)

...
...

. . .
...

σn (θ1) σn (θ2) · · · σn (θn)











(3)

where θ1, θ2, . . . , θn ∈ OK are linearly independent on F.

3. The matrix representation of an algebraic number

3.1. Example: Matrix representation of the complex
numbers

We can see the field of complex numbers as an extension
of degree 2 on R. That means that C = R(i) and i has
minimal polynomial X2+1. A complex number z = x+iy
has norm NC/R(z) = x2 + y2 = z · z. Now, each complex
number can be represented as a real matrix. For example,
we have the association

x + iy 7−→
(

x −y
y x

)

and we get

NC/R(z) = x2 + y2 = det

(

x −y
y x

)

3.2. Generalization

This matrix representation can be generalized [9]. If
K is an extension of degree n on F, then to each element
α ∈ K, we can associate a matrix Tα ∈ Mn(F) with deter-
minant,

detTα = NK/F(α)

Moreover, if α ∈ OK, then Tα ∈ Mn(OF).
For example, take

• F = Q(i); so OF = Z[i]

• θ = ei π

4 = 1√
2

(1 + i); so n = 2 and we get σ1(θ) =

θ, σ2(θ) = −θ

The matrix

Tz =

[

x iy
y x

]

∈ M2(F)

is associated to a number z = x + yθ with x, y ∈ F.

4. Transforming fading into a basis change

Now, assume that the received signal y is as in eq. (2)
with the Φ matrix satisfying (3). A reduction algorithm
tends to transform the lattice basis into another lattice basis
whose vectors have minimal length. It also tends to orthog-
onalize the basis. In other words, the reduction algorithm
tends to find a new basis as close as possible to the canoni-
cal basis of a Zn lattice . Matrix H can be expressed as

H =

(

n
∏

i=1

hi

)
1

n

· diag [a1, a2, . . . , an] (4)

with
∏n

i=1 ai = 1. Assume that the vector
(|a1| , |a2| , . . . , |an|) is composed by the modules of con-
jugates of some unit u in OK, i.e., ak = eiβkσk(u), ∀k with
βk = argak − arg σk(u). The received signal can then be
expressed as

y =
(

n
∏

i=1

hi

)
1

n

·diag
[

eiβ1σ1(u), . . . , eiβnσn(u)
]

·Φ ·x+b

Since Φ has the structure of (3), then,

y =

(

n
∏

i=1

hi

)
1

n

·Ψ · Φ · Tu · x + b

with Ψ = diag
[

eiβ1 , eiβ2 , . . . , eiβn

]

. Let Tu be the matrix
representation of the unit u.

Denote z = (1/
∏n

i=1 hi)
1

n ·Φ† · Ψ† · y, then

z = Tu · x + w

where w = (1/
∏n

i=1 hi)
1

n · Φ† · Ψ† · b remains an i.i.d.
noise vector. Now, since |detTu| = 1, (u is a unit), then it
is a unimodular matrix. So,

Tu · On
F = On

F

with OF = Z or OF = Z[i]. A ML lattice decoder is now
obvious as it is a symbol by symbol threshold detector fol-
lowed by multiplication by the matrix T−1

u . This inverse
matrix is easy to find, due to the structure of units in OK

[9].

5. The reduction algorithm

Now, we have all the necessary tools to present the re-
duction algorithm.
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5.1. The logarithmic lattice

Dirichlet’s theorem [9] gives the structure of units in
OK.

Theorem 1 Let K be an extension of Q with signature (r, s)
(with degree r+2s). Then there exists r+s−1 units named
“fundamental units” u1, u2, . . . , ur+s−1 such that any unit
u can be expressed as

u = ε ·
r+s−1
∏

i=1

uki

i (5)

where ε is a complex number with modulus equal to 1 and
ki ∈ Z.

Now from a unit u, construct the vector

u = (ln |σ1(u)| , . . . , ln |σr+s(u)|)>

Then vector u lies in a hyperplane with equation

r+s
∑

i=1

xi = 0

Moreover, in this hyperplane, (5) implies that all vectors of
type u are in a lattice named the logarithmic lattice, with
generator matrix,

2

6

6

6

4

ln |σ1(u1)| ln |σ2(u1)| · · · ln |σr+s(u1)|
ln |σ1(u2)| ln |σ2(u2)| · · · ln |σr+s(u2)|

...
...

. . .
...

ln |σ1(ur+s−1)| ln |σ2(ur+s−1)| · · · ln |σr+s(ur+s−1)|

3

7

7

7

5

5.2. Logarithmic lattice decoding and reduction

Now, the objective is to approximate the
vector

(

e−iβ1a1, . . . , e
−iβnan

)

with the vector
(σ1(u), σ2(u), . . . , σn(u)) where u is some unit. This
is done by performing a decoding of the logarithmic lattice.
But this decoding is quite easy to do since:

1. A suboptimal decoding is enough.

2. The logarithmic lattice is fixed, since it only depends
on Φ. All the preprocessing steps to decode that lat-
tice are done once and only once.

Once this step has been processed, a unit u is found corre-
sponding to a unimodular matrix Tu such that

Tu =
1

n











Tr(u) Tr(uθ) · · · Tr(uθ
(n−1))

Tr(uθ
−1) Tr(u) · · · Tr(uθ

(n−2))
...

...
. . .

...
Tr(uθ

−(n−1)) Tr(uθ
−(n−2)) · · · Tr(u)











where Tr is for TrK/Q(i). This matrix is the reduction matrix.

6. Simulation results

We present here simulation results in conjunction with a
linear detector for the lattice. We present here some simple
complex cases where the lattice is seen as a Z[i] lattice. All
unitary matrices are from [7].

6.1. The 2-dimensional complex case

The unitary matrix Φ is as in eq. (3) with

θk = exp
(

i(k−1)π
4

)

. There is one fundamental unit,

1 + i − e
iπ

4 and the logarithmic lattice is Λ ∼= Z.
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Figure 1: Lattice decoding - Dimension 2

6.2. The 4-dimensional complex lattice

The unitary matrix Φ is as in (3) with θk =

exp
(

i(k−1)π
8

)

. There are 3 fundamental units, −1+i−iθ2,

1+iθ2+θ3 and −1−iθ+θ2+(1+i)θ3 with θ = exp
(

iπ
8

)

.
This leads to the logarithmic lattice generated by





−0.88 0.88 −0.88 0.88
0.56 −0.16 −1.44 1.04
1.04 0.56 −0.16 −1.44





6.3. Structure of the decoder

Let

ε =
1

(
∏n

i=1 hi)
1

n

·H·(Ψ · diag [σ1(u), σ2(u), . . . , σn(u)])
−1−In

represent the approximation error, where In is the identity
matrix. After reduction, (2) becomes,

y =

(

n
∏

i=1

hi

)
1

n

· Ψ · (In + ε) ·Φ ·Tu · x + b
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Then a linear ZF or MMSE detection can be performed
which gives the results of Figs. 1 and 2. Note how the sub-
optimality of the decoder does not compromise the diversity
gain of the code.

7. Conclusion

A novel lattice reduction algorithm is given for al-
gebraic precoders. The complexity of our algorithm is
much lower than the one of the LLL algorithm and gives
excellent results as it preserves the diversity order of the
linear precoder even when it is followed by a ZF detector.
A more detailed analysis of this algorithm will follow in a
forthcoming paper.
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Figure 2: Lattice decoding - Dimension 4
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