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Complexity of ML lattice decoders for the
decoding of linear full rate Space-Time Codes
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Abstract—We propose here to compare, in terms of com-
plexity, two ML decoding algorithms, the Sphere-Decoder
and the Schnorr-Euchner decoder, when used to decode
multi-antenna transmission schemes, using full rate space-
time codes, over a Rayleigh fading channel.

Index Terms— Space-time codes, lattice, multi-antenna,
Maximum -Likelihood decoding

I. INTRODUCTION

IN this work we are interested in the decoding of
multi-antenna systems using full rate space-time

codes, over a Rayleigh fading channel by lattice de-
coders, the Sphere-Decoder (SD) and the Schnorr-
Euchner decoder (SE). In [1], a lattice representation
of multi-antenna schemes is presented. Our inter-
est in these decoders comes from the fact that they
achieve ML (Maximum Likelihood) performance
with reasonable complexity. In this work we will
study and compare both algorithms with the aim
of choosing the appropriate decoder according to
transmission parameters as the Signal to Noise Ratio
(SNR) and the number of antennas. We note that in
[2], Agrell et al. made a comparison of the SD and
the SE when used to decode infinite lattices, which
is not our case because we use finite lattice constel-
lations.

In the second part we present uncoded and lin-
early coded multi-antenna transmission schemes. In
the third part we study the two algorithms, and we
modify them to decode lattice constellations. In the
fourth part we study and compare the complexities of
the SD and the SE by using analytical and simulation
results.
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II. LATTICE REPRESENTATION OF

MULTI-ANTENNA SCHEME

A. Uncoded system

We consider a system with � transmit anten-
nas and � receive antennas, that we suppose syn-
chronous. The channel is assumed to be quasi-static
(block fading channel). The received signal at each
instant time is thus given by:

� � � � �� �� (1)

where� is the��� channel transfer matrix with
entries ���, that is the fading between transmitter an-
tenna � and receiver antenna �. � is modeled by
independent Gaussian random variables of variance
��� per dimension. � � ���� ��� � � � � ��� denotes the
modulated transmitted vector. We use 	-QAM con-
stellation, with 	 � �� �	� � � �, and the average energy
per bit is fixed to 
� � �. � represents the Addi-
tive White Gaussian Noise (AWGN) vector. It is an
� � � complex vector component-wise independent
with variance �� per dimension, where �� is adjusted
by �� � ���
����
 ��
 �	�����

����	��
���, 
��� is
the average symbol energy of the 	-QAM constella-
tion.

The independence of the receive antennas and the
affecting fades of each sub-stream transmitted by
each antenna presupposes that the transfer matrix �
is full rank with probability �, i.e the event of having
two or more dependent columns in � is negligible
with respect to the probability measure [1].

We will, in the following, usually use systems with
an equal number of transmit and receive antennas,
i.e. � � � a representation of the multi-antenna
transmission scheme by a lattice packing was given,
the system being written as :
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where �� � ���������� � �
�� � � is the ring of

integers (�� �
����� ����� �� � �

�� , � is the field
of real numbers, ���� and ���� denotes respectively
the real and the imaginary part of the vector �). The
dimension of the equivalent lattice is 
� .

Note that the rank of the matrix �� is almost al-
ways 
� , and its Gram matrix�� � ���

�
�

, is pos-
itive definite. Considering therefore this new repre-
sentation of the multi-antenna scheme, we can apply
the universal lattice decoders, like Sphere Decoder
and Schnorr-Euchner decoder, to decode such sys-
tems.

B. Coded system

We now encode the system with a linear Space
Time Code (STC). We will use the full rate, fully
diverse STC codes presented in [3]. Under another
form, these codes have been generalized in [4]. The
received signal matrix is then written as :

� �
��
�

�����	 (2)

where � is the number of transmit antennas, � is
the number of receive antennas and 
 is the tempo-
ral code-length. � is the � � 
 received matrix, �
is the � �� channel transfer matrix, 	 is � � 

noise matrix, and � is � � 
 code word matrix.
The expression of the � elements as a function of
the transmitted symbols is given in [3]. We rewrite
(2) to have a simpler equation to consider, we ob-
tain (3), where � and � are ��
 vectors, obtained
by concatenating the columns of respectively matri-
ces � and	 (it is equivalent to the vectorization of
(2)). Vector � is the vector of the transmitted sym-
bols and the matrix� is deduced from matrix� (See
ref. [5] for the 2 antenna case) as :

� �
��
�

�������� �� (3)

We notice that when using � antennas in the real
transmission scheme, the equivalent number of com-
plex dimensions in the transmission scheme model

described by (3) is � �. We therefore have to work
with a high number of antennas, even at low SNRs.

Let us now separate imaginary and real parts of
each vector and matrix component, to construct the
lattice representation of the system in (4).

�� �
��
�
��
�
�
�
�� ��� (4)

developed in the following equation,
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By defining � � ��
�
���

�
�
�
, and rewriting

equation(4),

�� � ���� ��� (6)

we obtain the lattice representation, where � is the
generator matrix of the lattice, i.e. a 
� ��
�� real
matrix. The multi-antenna coded system represented
in equation (6) can therefore be decoded by lattice
decoders.

III. LATTICE DECODERS

The SD and the SE are ML decoding algorithms
for lattice codes, when used over an independent
flat fading channel, with channel state information
known at the receiver. The SD and SE algorithms
were used to decode infinite lattices. In the follow-
ing paragraphs, we will present modifications to both
algorithms to decode finite lattice constellations. We
note that in [6] the authors have mentioned this idea
without going into detail.

A. Sphere-decoder (SD)

The sphere decoder, also known as Viterbo-
Boutros algorithm, was presented in [7] for the Gaus-
sian channel, then it was extended in [6] for the
Rayleigh fading channel case, and finally the case
of MIMO channels was introduced in [1] and in [8].
The algorithm searches for the closest point among
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all lattice points inside a sphere of a given radius
centered at the received point. The closest point
searching method consists in calculating minimum
and maximum bounds for each vector component,
and checking all lattice points inside the sphere by
scaling increasingly each vector component interval.
If no lattice point is found in the sphere, then, the
sphere radius is increased and the search is started
again.

The algorithm given in [6] is available when infi-
nite lattices are used, but in our transmission scheme
the information symbols belong to QAM constella-
tions. Therefore there is no longer an infinite �-
lattice but a finite lattice constellation, which means
a finite subset of a lattice. Consequently the vector
found by the SD must imperatively belong to this
constellation.

There are two ways to proceed :

1) Checking over the whole lattice, and keeping
only vectors belonging to the constellation.

2) Seeking lattice constellation directly by check-
ing only vectors belonging to the constellation.

The first method is more expensive than the second
in terms of operations. In our simulations we apply
the second method, whose flow chart is presented in
figure 4. The notation used in the SD flow chart is
in conformity with that used in [6]. The function
������� returns the closest integer to �, which be-
longs to the constellation .

At initialization of the SD, the sphere radius is
fixed. We note that for small SNRs, a large radius
is needed initially. However, for large SNRs, a small
radius is sufficient since the point to be detected is
closed to the received point. For this reason, taking
initially a small radius limits the search time. The
improvement made to the algorithm consists in cal-
culating the sphere radius according to the SNR. This
idea was presented in [9] and [10]. In [9], the given
formula to calculate the radius is as follows:

����
radius�
� � 
�������� ��
������ ������������

(7)
where � represents the lattice dimension. Unfor-

tunately this formula is not adapted to our applica-
tion, since �, the transfer matrix of the channel is
invertible, which means that the radius depends only
on the SNR and not on the channel. Therefore we
use the formula presented in [10], which is :

�� � 
����� (8)

Simulation results confirm the need to adapt the
radius according to the SNR, considering the gain
in number of operations. The results of figure 1
were obtained by simulating the uncoded system de-
scribed in section 
; � antennas were used at the
transmission and the reception. We have represented
the number of multiplications used by the SD un-
til convergence as a function of the SNR. The three
curves correspond to an adapted radius, to an initial
radius of � and to an initial radius of 
 respectively.
We notice that by using an adapted radius, we obtain
the smallest number of operations especially at small
SNRs, for example at �dB, we have ��� operations
less than the other cases. This improvement of the
SD will obviously improve the total complexity of
the SD.

B. Schnorr-Euchner Decoder (SE)

The Schnorr-Euchner algorithm we are studying
here was presented in [2]. It was used in cryptogra-
phy applications. This algorithm has the same prin-
ciple as the SD : the search for the closest point.

This algorithm is based on two stages. The first
stage consists in searching for the “Babai point”
(BP), which represents a first estimation, but is not
necessarily, the closest point. Finding the BP gives
us a bound on the error. In the second stage, we
modify the BP until the closest point is reached. We
zigzag around each BP component in turn to build
the closest point (unlike the sphere decoder, there is
no minimum and maximum bound for each BP com-
ponent). The time needed to find the closest point is
closely related to BP, which means closely related to
the SNR. In fact, if the BP is very far from the clos-
est point, i.e for low SNRs, the algorithm takes much
more time to converge. However, if the BP is close
to the closest point, i.e for high SNRs, the algorithm
converges rapidly.

The algorithm presented in [2] uses an infinite lat-
tice, which is not our case since we use a lattice con-
stellation. Therefore, similarly to the SD, we mod-
ified the SE algorithm to consider only vectors that
belong to the constellation. Our first choice to carry
out this modification was to scale only vectors that
belong to the constellation. Unfortunately, this al-
ways results in an infinite loop, or an incorrect result.
This can be explained by the fact that by modifying



4

the way of scaling to seek only constellation points,
the right point is lost and is never refound.

For all these reasons we adopt a searching method
which can go beyond the constellation,but only keeps
those belonging to the constellation. The flow chart
of this version of the algorithm is presented in figure
5. The notation used in the SE flow chart is in con-
formity with that used in [2]. The function �������
returns the closest integer to �, which belong to the
constellation .

IV. COMPARISON OF THE SD AND THE SE

Both SD and SE are ML decoders, which enables
us to conclude that the two algorithms perform well.
This was proved in [1] where the SD was used to
decode uncoded multi-antenna schemes. The two al-
gorithms have the same principle, the search for the
closest point, but differ mainly in the search method.
In the following we will compare the complexities of
these two algorithms.

Since the multiplications are the most expensive
operations in terms of machine cycles compared to
addition and comparison, only multiplications will
be taken in account to measure the complexity. The
complexity of the algorithm is defined by the number
of multiplications carried out until convergence.

However both algorithms, before attacking the
closest point searching phase, need a preparation
phase, which we will qualify by pre-decoding phase,
and also an initialization phase (see SD and SE flow
charts in figures 4 and 5). To study the complexity
of both algorithms, it is worth studying and compar-
ing first their respective pre-decoding and initializa-
tion phases, and subsequently their respective clos-
est point searching method. Finally we will compare
their respective total complexities .

A. Comparison of pre-decoding and initialization
phases

As shown on the flow-charts of the SD and the SE,
in pre-decoding and initialization phases we have es-
sentially two operations : the first one consists in
the calculation of a triangular form of the matrix
�. For that we can use either QR decomposition or
Cholesky decomposition. The second one consists in
the calculation of the Zero Forcing point (ZF).

When using QR decomposition, we decompose
�� , and then we define � � �� , where � is

a lower triangular matrix, this needs �
�
�� opera-

tions. When using Cholesky decomposition, we have
first to calculate the Gram matrix of �, defined as
���� � ��� , and so we decompose���� to ob-
tain���� � ���, where� is an upper triangular
matrix, and then� � �� . The total number of oper-
ations needed is �

�
���� . By comparing the number

of operations needed for each decomposition, we re-
mark immediately that the QR decomposition is less
expensive in terms of operations.

For the second operation, we need first to calculate
the inverse of the transfer matrix of the channel �.
The Zero Forcing point is defined by the equation
(9), where � is the received vector. We must note that
the “Babai Point” evoked in [2] is the same as the ZF
point.

� � ����� � ����������� (9)

For the SD, we will use matrix � to build matrix

, as defined in [6]. Using the matrix 
 and the
ZF point we calculate the minimum and maximum
bound of each closest point component. For the SE
also, we do not need the matrix� but its inverse. For
the SE, the ZF point represents the first point found
by the algorithm which will be adjusted in the fol-
lowing to obtain the closest point.

The total number of multiplications necessary to
carry out the pre-decoding and the initialization
phases using QR decomposition for the SD and the
SE respectively are : 	

�
��� �

�
��, ��

�
��� �

�
��� �

�
� .

We remark immediately that the pre-decoding and
initialization phases of the SE are heavier than that of
the SD. In fact the SE uses �

�
��� �

�
� multiplications

more than the SD. How critical this disadvantage is
depends on the lattice dimension � .

In fact, for small lattice dimensions, the number
of multiplications in the pre-decoding phase is of
the same order of magnitude as that of the search-
ing phase, so the pre-decoding phase has an influence
on the total complexity of both algorithms. This in-
fluence is more significant for fast fading channels,
where the pre-decoding phase are made more fre-
quently. For large lattice dimensions, the number
of multiplications in the pre-decoding phase is very
small compared to those in the searching phase, and
we can say that the pre-decoding phase doesn’t influ-
ence the total complexity of the algorithm.
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B. Comparison of searching phases

Let’s compare now the respective closest point
searching methods of the SD and the SE. Unlike the
pre-decoding phase, trying to build an exact expres-
sion of the number of multiplications is meaningless,
since the number of loops in the algorithm is totally
random. Hence to calculate the number of multipli-
cations we have simulated the uncoded and coded
schemes described in section 
 using as a decoder
both the SD and the SE. We have counted the number
of multiplications of each algorithm in the searching
phase until convergence.

In figure 2, we simulate an uncoded multi-antenna
scheme at an SNR of �� dB, the number of multipli-
cations in the searching phase of SD and SE respec-
tively is plotted as a function of the number of anten-
nas. We can distinguish three parts in the curves:

- for less than 5 antennas : the two algorithms have
almost the same complexity

- between 6 and 9 antennas : the SE has at least
1000 multiplications less than the SD

- for more than 9 antennas : the SD outperforms
the SE.

In figure 3, we simulate a coded multi-antenna
scheme at an SNR of � dB, the ratio of the number of
multiplications in the searching phase of SE by SD is
plotted as a function of the number of antennas. For

 antennas, the SE needs one and a half times more
multiplications than the SD, which represents a little
advantage for the SE thus can be exploited.

For more than 2 antennas, the SD outperforms the
SE, for example for � antennas, which correspond to
�� 
 antennas in the simulated scheme described by
(6), the SD has � times more multiplications than the
SE.

In conclusion, we can say that by considering only
the searching phase, simulation results of the un-
coded and the coded schemes have confirmed that
for a high number of antennas the SD outperforms
the SE. And we note that for a low number of an-
tennas the SE has an advance compared to the SD,
which is good for systems using slowly fading chan-
nels.

C. Comparison of the total complexity

As we consider a transmission scheme using a
block fading channel, the pre-decoding phase is nec-
essary for each codeword and consequently the com-
plexity of this phase will affect the total complexity.

To evaluate the total complexity of both algorithms
we have added the number of multiplications of the
three phases, pre-decoding, initialization and search-
ing.

In figure 2 we have also plotted the total number
of multiplications of the SD and the SE respectively
as a function of the number of antennas. We see
that for less than � antennas, both algorithms have
almost the same complexity. We can say therefore
that there was a compensation between SD’s advan-
tage in the pre-decoding phase and SE’s advantage in
the searching phase. For more than � antennas, SD is
less complex than SE, and we can say that for a high
number of antennas the searching phase complexity
has a strong influence on the total complexity.

In figure 3 we have also plotted the ratio of the
total number of multiplications SE by SD as a func-
tion of the number of antennas. We remark that the
two curves are close, and we conclude that for coded
schemes, or systems with a high number of antennas,
the SD outperforms the SE. This result is foresee-
able given the conclusions of the two previous para-
graphs.

V. CONCLUSION

We have studied the complexities of the Sphere de-
coder and the Schnorr-Euchner decoder, when used
to decode uncoded and linearly coded multi-antenna
transmission schemes, over a Rayleigh fading chan-
nel. The complexity of both algorithms is defined as
the number of multiplications carried out until con-
vergence.

Our study has shown that the SE has heavier ini-
tialization and pre-decoding phases than the SD, and
conversely, the search phase of the SE is less com-
plex than that of the SD.

To conclude on the total complexity of both
decoders when used to decode our transmission
scheme, we have to distinguish two cases. For a
small number of antennas, both stages compensate
each other in terms of complexity, and consequently
the total complexities of the two algorithms are too
close with a little advantage for the SE. For a high
number of antennas, the complexity of the searching
stage has a stronger influence on the total complex-
ity, and therefore SD is more advantageous than SE.
We have also noted that the SNR variations affect the
complexities of the two decoders, especially the SE.
In fact, the lower the SNR, the worse the estimation
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of the closest point by the BP is, and consequently
the longer the search stage .
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