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Abstract—Due to the capacity achievable, Multiple-Input
Multiple-Output (MIMO) systems witnessed more interest in
recent years. Several data detection algorithms are available
for MIMO systems, especially the tree-search ones which offer
lower complexity comparing to the ML receiver. In this paper,
we are interested in one of tree-search algorithms, which is the
Stack decoder. Nevertheless, the stack decoder is only proposed
to decode MIMO systems employing finite constellations, as
the QAM (Quadrature Amplitude Modulation). In this work,
we introduce a new Stack decoder capable of decoding lattice
and we call it the M-Stack decoder. The principle idea behind
it is to generate M nodes at each tree-level and so to reduce
the infinite alphabet of the lattice to only M components
at each step. Then, we propose to adapt it to decode QAM
constellations. This one is compared to the known QRD-Stack
algorithm. While both visit the same number of nodes, the
proposed M-Stack algorithm offers lower computational
complexity and it is much faster than the QRD-Stack one.

Keywords: MIMO, lattice decoding, tree-search algo-
rithm, Stack decoder, complexity, QRD-Stack.

I. INTRODUCTION

In this work, we are interested in the decoding of multi-
antenna systems using spatial multiplexing [1] and linear
space time block codes (STBC). In [2], a lattice represen-
tation of multi-antenna schemes has been presented, which
makes it possible to decode such systems using lattice
decoders. In the literature, different decoders are proposed
such as the sphere decoder [3] and the Schnorr-Euchner
algorithm [4]. In [5], another kind of decoders, based on
sequential algorithms especially the Stack and the Fano ones
were also used to decode MIMO systems. However, they are
proposed to decode finite constellations like QAM and BPSK
modulation but they are unsuitable for decoding codewords
belonging to an infinite alphabet like lattice.

In this work, we propose a new Stack decoder that
overcomes this problem. We then introduce the M−Stack
algorithm. The purpose from it is to reduce the lattice to a
finite alphabet. This is done by considering only one finite
region in the lattice.

We focus here on the Stack decoder rather than the Fano
one, as it was shown in [6] that the Stack decoder is six
times faster and less computationally complex than the Fano.

These observations are ones of our main interests in the Stack
decoder.

Furthermore, we show that we can use the proposed
algorithm to decode finite constellations. We compare then
the M−Stack to the well known QRD-Stack algorithm [7].
We show that the two algorithms have several similarities
however the M−Stack is less complex than the first one.

This paper is organized as follows. In section II, we
introduce the system model. In section III, we recall the idea
behind the conventional Stack and the QRD-Stack decoders.
Then in section IV, we present the proposed M−Stack
algorithm for lattice. This one will be further extended to
the case of finite constellations. In section V, we give the
simulation results, and finally we draw the conclusions in
section VI.

II. SYSTEM MODEL AND NOTATIONS

A. MIMO scheme with spatial multiplexing (SM)

Let us consider a MIMO system with nt transmit and
nr receive antennas using spatial multiplexing scheme. The
channel is assumed to be quasi-static, and the received signal
is given by

yc
nr

= Hc
nr×nt

· xc
nt

+ wc
nr

(1)

where Hc is the channel transfer matrix with complex
entries hij representing the fading coefficients between the
ith receive and the jth transmit antennas and are modeled
by independent Gaussian random variables of zero-mean and
variance 0.5 per real and imaginary component. xc is the
complex information vector.

We call lattice case if the information symbols xc
i

,i = 1, . . . , nt, are carved in Z[ι], ι2 = −1. Otherwise,
they are carved in finite constellations, such as the QAM
constellation. For example for a 4-QAM, the real and
imaginary parts of each component xc

i belong to the interval
[−1,+1]. However, for large constellation sizes such as
256-QAM, we can assume that we are in the lattice case
as the real and imaginary parts of xc

i belong to a large
interval [−15,+15]. wc represents the i.i.d complex additive
white Gaussian noise vector with zero-mean and variance σ2.
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A representation of the multi-antenna scheme by a lattice
packing was proposed in [8]. This one is obtained by sepa-
rating the real and imaginary parts as

y =

[
ℜ(yc)
ℑ(yc)

]
=

[
ℜ(Hc) −ℑ(Hc)
ℑ(Hc) ℜ(Hc)

]
·
[
ℜ(xc)
ℑ(xc)

]

+

[
ℜ(wc)
ℑ(wc)

]
(2)

y = H · x + w (3)

H is therefore the equivalent lattice generator matrix of
dimension 2nr × 2nt.

B. MIMO scheme with STBC

We now consider a coded system using a linear space
time block code [9], such as the TAST codes [10] and the
perfect codes [11][12]. In most current wireless standards
(Wi-Fi, WiMAX and LTE), MIMO is combined with channel
coding to further improve the system diversity (robustness).
The received signal matrix is then given by

Y c
nr×T = Hc

nr×nt
· Cc

nt×T + W c
nr×T (4)

where Cc
nt×T represents the codeword matrix. We consider

a MIMO symmetric system, i.e, nt = nr, and a square code,
which means that the temporal code length T is equal to nt.
The lattice representation is obtained here by vectorization
and separation of the real and imaginary parts of the received
signal Y c

nr×T [11]. The equation (4) becomes therefore

yc
nr·T =

⎛

⎜⎜⎜⎜⎝

Hc
nr×nt

0

.
.
.

0 Hc
nr×nt

⎞

⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎝

φ11 . . . φ1,ntT

.

.

.
.
.
.

.

.

.
φntT,1 . . . φntT,ntT

⎞

⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎝

x1
.
.
.

xntT

⎞

⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎝

w1
.
.
.

wnrT

⎞

⎟⎟⎟⎠

We then get an equivalent system to (1)

yc
nr·T = Hc

1,nr·T ×nt·T · φc
nt·T ×nt·T · xc

nt·T + wc
nr·T

= H ′c
nr·T ×nt·T · xc

nt·T + wc
nr·T (5)

Then, the separation of the real and imaginary parts is applied
on the former equation as in (2), and the coded system is
therefore given by

y = H ′
n×n · xn + wn

= H · x + w (6)

where we define by H = H ′
n×n the equivalent lattice

generator matrix of dimension n = 2nt
2.

C. Decoding scheme

Under the assumption of a perfect knowledge of the
channel state information at the receiver, the ML decoding
rule is given by

x̂ = arg

(
min

x∈Znor x∈(QAM)n
∥y − H · x∥2

)
(7)

The obtained system model can then be decoded by several
decoders such as the sphere decoder and the Schnorr-
Euchner algorithm [3][4] or the Stack decoder which are
basically tree-search algorithms.

More generally, to apply tree-search, we need first to
expose the tree structure. A QR or a Cholesky decomposition
can be then applied on the lattice generator matrix H . These
two methods are quite equivalent, however the QR is more
complex than the Cholesky decomposition but it is more
stable numerically [13]. So, we apply the QR decomposition,
the system can be written as

y = Q · R · x + w (8)

where Q is an orthogonal matrix and R an upper triangular
one. The multiplication of both sides of (8) by the transpose
of Q does not change the decoding problem and we get

y1 = Q† · y = R · x + Q† · w

R is now the equivalent lattice matrix. Exploiting the upper
triangular form of R, one can solve the decoding problem
using a tree search algorithm and the ML solution to look
for is then given by

x̂ = arg

(
min

x∈Znor x∈(QAM)n
∥y1 − R · x∥2

)
(9)

Throughout this paper, we consider a tree rooted at a fictive
node xroot. The node at level k is denoted by the vector
x(k) = (xn, xn−1, ..., xk) where xj , j = 1, . . . , n are the
components of x. Moreover, the branches of the tree at level
k define all the possible values that can be taken by xk, and
each node x(k) is associated with the squared distance

f(x(k)) =
n∑

i=k

fi(xi) (10)

where fi(xi) =
∣∣∣y1i −

∑n
j=i ri,jxj

∣∣∣
2
. We call f(x(k)) the

cost function of the node x(k). It represents the ”sub-
distance” between the received and the transmitted signal at
the level k. The tree search consists in exploring the tree
nodes in order to find the path (xn, xn−1, ..., x1) with the
least cost as shown in the figure 1.
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level 4

level 1

level 3

level 2

xroot

x3

x2

x1

x(1) = (x4, x3, x2, x1)

x4

Figure 1. Example of a tree structure with a dimension n=4

III. OVERVIEW OF TREE SEARCH-ALGORITHMS: THE

STACK DECODER AND THE QRD-STACK DECODER

We recall here the main ideas of these two decoders as
existing in the literature.

A. Stack decoder

The Stack decoder belongs to the class of sequential
decoders that were originally proposed to decode binary
trellis codes [14]. To describe the Stack algorithm, let us
suppose that the decoder is started at a fictive root node
xroot. The Stack algorithm generates all the child nodes
of xroot. We call a child node the successor node which
leads to the next level of the tree. For example, by using
finite constellations such as a 16−QAM constellation, each
tree node belongs to the set Ic = {−3,−1,+1,+3}, then
we have a 4 − ary tree with 4 nodes at each level. More
generally, for a q − QAM , the nodes to consider are in
Ic =

{
±1,±3, . . . ,±√

q − 1
}

.
The algorithm computes then the respective costs of those

nodes according to the cost function in (10) and stores them
in an increasing order in the stack, so that the top node of
the stack is the one having the least cost. Afterward, the
algorithm generates the children of the top node, computes
their costs, places them in the stack and removes the top node
being just extended. The algorithm reorders again the stack,
generates the children nodes of the current top node, and so
on. The algorithm terminates when a leaf node (i = 1) is
found on the top of the stack.

As explained above, the Stack algorithm conducts a best-
first-search strategy, so that the solution provided is the one
with the least metric which corresponds to the ML solution.
The different steps of the Stack algorithm can be described
as:

1) Start from the root node with zero accumulative metric,
and i = n (the first detection stage).

2) Extend branch on top of stack to all possible nodes and
remove parent branch.

3) Order resulting branches based on their metrics.
4) If the last detection stage is reached (i = 1), go to step

6 otherwise continue.
5) Move to the next stage (i = i − 1), and go to step 2.

6) Order survival branches based on their accumulative
metrics and retain the best branch.

B. QRD-Stack algorithm

The QRD-Stack algorithm performs the same algorithm
than the Stack one however it retains only a pre-defined
number of branches at each level, the M best ones which
have the M smallest metrics, instead of all the possible
branches [7]. As a result, the number of visited nodes of
the algorithm becomes deterministic for fixed problem size
and more reduced than the first one especially for high
constellation sizes like 64-QAM and 256-QAM.

Nevertheless, the nodes retained may not lead to the
shortest path but discarded by the algorithm. Consequently,
the ML solution is not reached. So, this algorithm allows
to limit the number of the generated nodes but at the price
of a performance loss. We reformulate here the QRD-Stack
algorithm as following steps:

1) Start from the root node with zero accumulative metric,
and i = n (the first detection stage).

2) Extend branch on top of stack to all possible nodes and
remove parent branch.

3) Order resulting branches based on their metrics, retain
the M best branches with the least metrics.

4) If the last detection stage is reached (i = 1), go to step
6 otherwise continue.

5) Move to the next stage (i = i − 1), and go to step 2.
6) Order survival branches based on their accumulative

metrics and retain the best branch as the solution of
the QRD-Stack algorithm.

IV. THE PROPOSED M−STACK DECODER

From the two former algorithms, we can see that they can
be used only if we use finite constellations. The principle is
to enumerate the nodes belonging to the constellation which
contains a finite number of components.

However, considering a lattice, the symbols are defined in
an infinite field Zn, each component xi ∈ Z which leads to
an infinite tree structure. So, it is impossible to enumerate an
infinite number of nodes which makes it impossible to use
these algorithms. In the following, we propose the M−Stack
algorithm which allows to resolve this problem.

A. Lattice decoding

In order to apply the Stack decoder, we should search
for the solution in a finite region Λ⊂Zn and discard the
rest. Unfortunately, the truncation of the tree will affect the
performances. In fact, the transmitted symbol may be out of
the search region and then the solution is discarded by the
algorithm. The main challenge is then how to choose the
optimal region Λ.

Yet, the triangular form of the lattice basis R reminds us
the Schnorr-Euchner enumeration strategy [15]. The key idea
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of this algorithm is to view the lattice as a superposition
of n hyperplanes and to start the search by projecting the
received vector on the nearest hyperplane (level n in the
tree). The resulting point is then recursively projected on the
following n − 1 hyperplanes. The point found is the ”babai
point”, it corresponds to the ZF-DFE solution [8]. Then, the
Schnorr-Euchner algorithm consists in generating the nodes
by zigzagging around the babai point using the depth-first-
search strategy.

In the proposed M−Stack algorithm, we were inspired by
the Schnorr-Euchner principle, however the search strategy
and the construction of the tree are quite different.

In fact, the algorithm starts by projecting the vector y1 on
the nth hyperplane. The resulting point zn that corresponds
to the nth component of the babai point is then considered
as the first node generated in the tree-level n:

zn =
[

y1n

rn,n

]
(11)

where [x] rounds x to the nearest integer. Then, the
algorithm enumerates M nodes xn of the tree, centered at
zn by zigzagging around it as follows:

xn ∈ {zn, zn ± 1, zn ± 2, zn ± 3, ...zn ± (M − 1)/2} (12)

So that, at the level n, we get exactly M nodes. Then, the
M−Stack algorithm calculates their metrics and stores them
in the stack. As in the conventional Stack algorithm, the top
will be extended. First, the top is projected on the hyperplane
n − 1, we obtain the point zn−1 as follows:

zn−1 =
[
y1n−1 − rn−1,nxn

rn−1,n−1

]

(We note that zn−1 does not correspond necessarily to
the (n − 1)th component of the babai point as the top node
xn may be different of zn). The M nodes xn−1 to consider
at level n − 1 are computed as the same manner as in (12),
then they will be stored in the stack and the top removed.
If the top is at level i, it is projected on the hyperplane i
and so on. The algorithm stops when the leaf node is reached.

In the figure 2, we represent an example of tree construc-
tion where n = 4 and M = 3.

For the ease of understanding, the M−Stack can be
summarized as follows:

1) Start from the root node with zero accumulative metric,
and i = n (the first detection stage). x = top = [].

2) zi =
[(

y1i −
∑n

j=i ri,jxj

)
/ri,i

]
. Enumerate M

nodes around zi.
3) Order resulting branches based on their metrics, x =

top.

Level 1

Level 3

Level 4

Level 2

znzn − 1

z1 + 1

zn + 1

zn−1zn−1 − 1 zn−1 + 1

z1z1 − 1

Figure 2. Example of a tree construction with a dimension n = 4
and M = 3

4) If the last detection stage is reached (i = 1), go to step
6 otherwise continue.

5) Move to the next stage (i = i − 1), and go to step 2.
6) Order survival branches based on their accumulative

metrics and retain the best branch as the solution of
the M−Stack algorithm.

By applying this algorithm, we get a finite tree and so the
Stack algorithm can be performed. However, the ML solution
is not guaranteed to be included in the considered tree. To
reach it, we should enlarge the search region. Meanwhile, that
implies to have a denser tree which leads to a more complex
decoding task.

B. Decoding finite constellations

We propose here to adapt the M−Stack to the case of
finite constellations. In this case, the algorithm should simply
check if the generated branches belong to the constellation
interval Ic. Then, the M−Stack algorithm can be modified
as follows:

1) Start from the root node with zero accumulative metric,
and i = n (the first detection stage). Put x = top = [].

2) zi =
⌈(

y1i −
∑n

j=i ri,jxj

)
/ri,i

⌋
. Enumerate M

((nodes around zi) ∩Ic). (⌈x⌋ is the demodulation of
the float x in the considered QAM constellation)

3) Order resulting branches based on their metrics. Put
x = top.

4) If the last detection stage is reached (i = 1), go to step
6 otherwise continue.

5) Move to the next stage (i = i − 1), and go to step 2.
6) Order survival branches based on their accumulative

metrics and retain the best branch as the solution.

In this algorithm, we have considered a fixed number of
nodes generated at each stage (M=constant). One can think
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to use large numbers Mi for first levels and small Mi for the
last ones. This choice may be efficient due to the problem of
error propagation in the tree search.

In the next section, the performances of the proposed
M−Stack decoder will be evaluated.

V. SIMULATION RESULTS

In this section, we give some simulation results obtained by
considering a MIMO system using SM by means of Monte-
Carlo simulations.

In the figure 3.a, we plot the symbol error rate (SER) as a
function of the signal to noise ratio (SNR) given in dB scale
for a 2 × 2 MIMO system in the case of a lattice defined in
Zn, when performing the M−Stack algorithm. The different
curves show that as well as we increase the search region (i.e
we consider larger M ) the performances are closer to ML,
however the complexities are more and more important as
shown in the figure 3.b. The complexity is computed as the
total number of multiplications needed to decode one symbol.

Therefore, a compromise may be done and this decoding
algorithm can be of great interest. In fact, at the start of
the algorithm, one only needs to choose the performance-
complexity trade-off to reach, to define the appropriate M to
consider.

In the figure 4.a, we evaluate the M−Stack algorithm
in the case of using QAM constellations. We consider a
4 × 4 MIMO system using 16-QAM constellation and we
compare it to the QRD-Stack and the conventional Stack
one. For M = 4, the three algorithms generate all the
constellation nodes (−3,−1,+1,+3). In this case, the ML
solution is not discarded and the three algorithms give exact
ML performance. The QRD-Stack and the M−Stack are
then equivalent to the conventional Stack algorithm and
consequently they exhibit the same complexity.

For M ≤ 4, the conventional Stack generates more nodes
than the others. Therefore, the QRD-Stack and the M−Stack
give less complexity than it. However, they exhibit sub-
optimal performances since the ML solution is not among
the M retained nodes. The performance decreases as well
as M decreases, however the complexity is more and more
reduced as reported in the figure 4.b. Besides, we can see for
all algorithms that the complexity decreases rapidly with the
increase of SNR.

Furthermore, we can see that for the same number of
generated nodes (M is the same for both algorithms), the
QRD-Stack presents better performances than the M−Stack
and the gap in performances is more and more important
than M decreases. This is due to the fact that the QRD-
Stack algorithm retains better nodes than the M−Stack one.
This can be also seen in the figure 5 while using a 64-QAM
constellation.
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Figure 3. Performance and complexity of the M−Stack decoder for
a 2× 2 MIMO system with SM

However, for a sufficiently high value of M , the M−Stack
gives the same performance as the QRD-Stack, as we can see
in the figure 4.a for M = 3. But in all cases, the M−Stack
offers a lower complexity. This can be explained by the fact
that the QRD-Stack starts by calculating all the constellation
nodes, which presents an additional computational complex-
ity, then it retains the M best ones. Whereas the M−Stack
only needs to compute the point zi and generates directly
the M nodes by zigzagging around it. So, the M−Stack
decoder represents an interesting alternative to the QRD-
Stack algorithm especially for high values of M .

VI. CONCLUSION

In this paper, we have introduced the M−Stack decoder
for detection in a MIMO communication system. The main
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Figure 4. Performance and complexity of the M−Stack decoder for
a 4× 4 MIMO system with SM using 16-QAM constellation

advantage of this decoder is that it is suitable for decoding
both lattice and finite constellations. While the existing
decoders, like the QRD-Stack and the conventional Stack,
only decode finite constellations. The performances of this
algorithm for various M values were also presented and com-
pared to both QRD-Stack and conventional Stack decoders.
It was shown that these ones reach ML performance at high
values of M . However, the M−Stack is shown to achieve
such performance with less computational complexity. This
complexity gain is more and more important as we increase
the constellation size ans the system dimensions.
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