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Abstract—When distributed cooperative nodes are communi-
cating with a destination, the received signal can be asynchronous
due to the propagation or processing delays. This can destroy
the space time block code properties designed initially for
synchronous case. In this paper, a new construction method
of bounded delay tolerant codes is presented. These new codes
preserve the full diversity with optimal rates if the relative delays
are in a designed delay tolerance interval. The general design
method is based on the concatenation and permutation of optimal
synchronous space time block codes and works for an arbitrary
number of transmitting and receiving antennas. Examples of
bounded delay tolerant codes based on the Alamouti code, the
Golden code and Threaded Algebraic Space-Time (TAST) codes
are given. Theoretical proofs are used to show that the new codes
respect the design criteria. Simulation results manifest better
error rate performance of the new codes compared to other
known delay tolerant codes.

Index Terms—Delay tolerant codes, asynchronous cooperative
networks, distributed space-time coding, rank and determinant
criteria, cooperative diversity.

I. INTRODUCTION

COOPERATION between the nodes of a wireless network
is a promising technique to increase the reliability and

the transmission rate of data over the wireless channels. This
can be an alternative technique of multiple-antenna (MIMO)
systems to provide spatial diversity when network nodes
cannot have more than one antenna due to size, cost, or
hardware limitations. Space Time Codes (STCs) were pro-
posed for MIMO systems and distributed versions of STCs
were also designed for cooperative communications. These
codes follow the well-known rank and determinant criteria
[1] when the nodes of the network are synchronous [2]–
[5]. However, unlike the multiple-antenna (MIMO) systems
where the antennas are collocated at the same device, the
antennas in cooperative systems are spatially distributed on
different nodes. This new configuration can result in an
asynchronism due to the difference in local oscillators and/or
the different processing and propagation delays. The lack of
perfect synchronization among the cooperative transmitting
nodes destroys the required Space-Time Code signal structure
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leading to the reduction of the achievable diversity and thus
deteriorates the code performance. Therefore, the synchronous
STC designed for MIMO systems are no longer valid for
asynchronous cooperative communications.

Many recent works have proposed solutions to preserve
the diversity order when the relays have arbitrary relative
delays in transmitting their symbols [6]–[9]; for instance,
the Orthogonal Frequency Division Multiplexing (OFDM)
technique, or the design of a Space-Time Block Code (STBC)
that is delay tolerant i.e. the code matrix remains full rank
even in the presence of a delay between the relays. In [7],
to reduce the impact of synchronization errors, the authors
proposed to use Space-Time Codes designed for frequency-
selective channels to combat these errors; in particular, Time-
Reverse Space-Time Code (TR-STC) and Space-Time OFDM
(ST-OFDM) were considered. The authors of [8] designed
a distributive Space-Frequency code based on OFDM for
frequency selective fading channels. Cyclic prefix is used
at the relays to combat the timing errors and the delay of
multipath. However, these solutions are not suitable for non
OFDM systems and they cause a rate loss that results from
adding cyclic prefix.

On the other hand, several codes preserving these properties
in the case of lack of synchronization have been proposed and
called “delay tolerant codes”. In [10], the author showed that
codes obtained form generalization of the construction in [11]
preserve the diversity gain despite the timing offset among the
relay nodes. He also showed that certain binary STBC derived
from the stacking construction [12] are delay tolerant.

In [13], the authors built on the framework provided by
[14] and [15] to design a new class of STBC that shares
the advantages of the Threaded Algebraic Space-Time (TAST)
codes and are also delay tolerant. Their proposed codes are
referred to as “Distributed TAST codes” with length growing
exponentially with the number of relays. Nevertheless, to
achieve a full diversity for any delay, the transmission rate
is reduced by the repetition of some symbols. This solution
has been applied to the optimal synchronous codes such as
the Alamouti code [16] and the Golden code [17]. Another
delay-tolerant extension of the TAST is presented in [18]. In
difference with [13], the code construction was restricted to
square matrices (the temporal span of the code equals the
number of transmit antennas) and has used a full-diversity
single input single output (SISO) code to fill all the threads
in the space-time codeword matrix.

In [19], a new 2×2 delay tolerant code is proposed based on
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modification of the Golden code by application of convenient
unitary matrices. The idea is to combine differently all the
symbols to send, for each antenna and each transmission.
However, to successfully decode these codes, we should have
a sufficient number of antennas at the receiver which means
that single antenna nodes cannot use these codes. In [20], we
introduced a new coding scheme for two asynchronous trans-
mitters based on the outage probability derivations in [21].
But, this scheme is not practical because the diversity order
becomes equal to 1 when the transmitters are synchronous.

Previous works looked for a relevant solution for any delay
value and this usually results in a loss of rate and an increasing
complexity. However, in practical wireless systems the delays
are generally bounded by a maximal delay as in [22], which
motivates our work. In this paper, we introduce a new design
construction method based on optimal synchronous codes,
to build delay tolerant codes for an arbitrary number of
cooperative nodes and for certain delay profiles. These new
codes will be referred to as “bounded delay tolerant STBC”.
Moreover, examples of these codes based on Alamouti, Golden
and TAST codes are given. The new codes are shown to
respect the rank criterion and determinant criteria and to
outperform other known delay tolerant codes.

The contributions of this work can be summarized as
follows:

∙ The design of new family of distributed delay tolerant
STBCs based on optimal synchronous codes for cooper-
ative communications. The new codes ensure optimal per-
formances when the cooperative nodes are synchronous
and a full diversity and optimal rate for a certain set of
delay profiles that change with the code length.

∙ The design method is simple to apply and it consists of
changing the order of the symbols to send by concate-
nating and permutating several code matrices.

∙ The method is also flexible with respect to the number of
transmit and receive antennas, the signaling constellation
and the transmission rate.

∙ The overall rate of the code is optimized by increasing
the code length and thus less guard intervals are needed
between the codewords because the length of the code-
words are bigger.

The paper is organized as follows. In Section II, the system
model is described. The delay tolerance of some known STBC
and existing solutions are discussed in Section III. In Section
IV, the general construction method of bounded delay tolerant
codes is explained and the advantages of this method are
discussed. Construction examples based on the Alamouti code,
Golden code and TAST codes are designed in Sections V and
VI with theoretical proofs and simulation results. In Section
VII, we give conclusions.

II. SYSTEM MODEL

We consider a wireless system with ! transmitters
"1, "2, . . . , "! having one antenna each, and a destination
% with &" antennas. The network model is shown in Figure
1.

Due to the distributed nature of the network, a different
time delay is introduced on each transmitter-destination path.

Fig. 1. Asynchronous wireless network model with ! transmitters and "!

receive antennas.

'1, '2, . . . , '! denote respectively the delays from the trans-
mitters "1, "2, . . . , "! to the destination %. We consider, for
instance, the first transmitter "1 as the node reference and we
denote by Δ#(( = 2, . . . ,!) the relative delay between the
transmitter "# and "1: Δ# = '# − '1.
The fractional delays are assumed to be absorbed in multipath
(cf. [18]), so the delays '# are integer factors of the symbol
period. The delays are unknown at the transmitters, but are
known at the destination. The system model is equivalent to a
distributed MIMO system with ! transmit antennas (one per
transmitter) and &" receive antennas.

The transmission is modeled as follows. The destination %
receives the signal: y = HX+n , where X is the modulated
!×" space-time codeword matrix transmitted over " symbol
intervals and n is the Additive White Gaussian Noise (AWGN)
at the destination with variance &0. The channel is assumed
to be quasi-static, so the channel matrix H is constant over a
frame interval but is independent from one frame to another.
We denote by ℎ#,% the channel gain between the (th transmitter
"# and the *th antenna of % with ( = 1, . . . ,! and * =
1, . . . , &".

This system model represents a general cooperative network
model with the transmitters being relay nodes or base stations
or mobiles able to relay etc...

In what follows, (.)∗, (.)& and (.)' denote respectively the
conjugate, transpose and Hermitian operations.

III. DELAY TOLERANCE OF OPTIMAL STBC

We discuss first some examples of optimal synchronous
STBC to introduce the “delay tolerance” notion and after,
we remind some solutions proposed to design delay tolerant
codes.

A. Optimal STBC Are Not Delay Tolerant

For 2×1 MISO scheme, the Alamouti code [16] is designed
and proved to achieve a diversity of two with full data rate as
it transmits two symbols in two time intervals:

As =

[
+1 −+∗

2

+2 +∗
1

]
,

where +1 and +2 are the symbols to transmit; +∗
1 and +∗

2 are
the complex conjugate of +1 and +2 respectively.
However, this scheme has a full diversity with two perfectly
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synchronized transmitters and it looses this propriety when
the transmitters are not synchronized. In fact, suppose that
the second transmitter "2 has a relative delay of one symbol
period (Δ2 = 1). The code matrix takes, in this case, the
following form:

Aa =

[
+1 −+∗

2 0
0 +2 +∗

1

]
.

Thus, we have det(Aa.Aa
') = ∣+1∣2 .(∣+1∣2 +2 ∣+2∣2) which

is equal to zero if only +1 = 0. Thus, the imperfect delay
synchronization between the two transmitters destroys the
Alamouti structure and makes the destination unable to detect
the original signal successfully; so the Alamouti code is not
delay tolerant.

The Golden code is an optimal Space-Time code for two
transmit and two receive antennas MIMO systems [17]. Its
code matrix is:

G =
1√
5

[
,(+1 + -+2) ,(+3 + -+4)
. ,̄ (+3 + -̄+4) ,̄ (+1 + -̄+2)

]
,

where . =
√
−1, - = 1+

√
5

2 , , = 1+ .(1− -), -̄ = 1− -, and
,̄ = 1 + . -. However, it is not delay tolerant as can be seen
by shifting the second row one column and then setting the
entries +1 and +2 to zero. Similarly, the more general class of
STCs, derived from cyclic division algebras (CDA) of which
the Golden code is a special case, is not delay tolerant either
[13].

The TAST codes were proposed in [15]. These codes
provide excellent performance and flexibility with respect to
signaling constellation, transmission rate, number of transmit
and receive antennas, and decoder complexity. An example of
TAST codes for ! = 2 transmit and &" ≥ 2 receive antennas,
is the TAST-2 code defined as follows [15]:

T2 =
1√
2

[
+1 + -+2 /1/2(+3 + -+4)

/1/2(+3 − -+4) +1 + -+2

]
,

where - = 0)* and / = 0)*
′
.

Unfortunately, the TAST codes and other related codes avail-
able in the literature are not suitable for asynchronous cooper-
ative communications, since they are not delay tolerant which
was clearly illustrated in [13].

B. Existing Solutions for Delay Tolerant STBC

The CDA and TAST codes are not delay tolerant because
they are based on threads of minimal delay (" = !) and
hence contain diagonal matrices that are not delay tolerant.
In [13], the authors extended the class of the TAST codes
to the case of delay tolerant codes for cooperative diversity.
Their proposed codes, named Distributed-TAST codes, are
based on delay tolerant threaded structures of length growing
exponentially with the number of relays. The different threads
are separated by different algebraic or transcendental numbers
which guarantee a nonzero determinant for the difference of
every two distinct codewords. The idea is to repeat the symbols
in a way that, even when the transmitters are asynchronous, the
versions of the same symbols sent by the ! transmitters arrive
at the destination in at least ! different symbol periods and
thus conserve a full transmit diversity order! . Although these

codes provide full-diversity gain for any delay profile, they
are not minimum delay length because of symbols repetition
and are no longer delay tolerant if a column of the codeword
matrix is lost.
This solution was applied to the Alamouti code and a variant
of the Golden code by repeating the second column [13]. For
instance, the delay tolerant version of the Alamouti code is:

Ad =

[
+1 −+∗

2 −+∗
2

+2 +∗
1 +∗

1

]
.

In the sequel, this new form of Alamouti code will be called
the Asynchronous Alamouti (AA).
Moreover, the delay tolerant version of the Golden code, that
will be called hereafter the Asynchronous Golden (AG), is:

Cd =
1√

2(1 + 12)

[
+1 + .1+4 1+2 + +3 1+2 + +3

+2 − 1+3 .1+1 + +4 .1+1 + +4

]
,

(1)
where 1 = - − 1.
Although these new versions of the Alamouti code and the
Golden code are delay tolerant since they achieve the maxi-
mum diversity for any shifted version of the code matrix, they
suffer from a rate loss due to the repetition.

Another solution was given in [18] and [19]. The idea in
these papers is to combine differently, all the symbols to send,
for each antenna and each transmission; thus, even in the
presence of a delay, it is sure that each symbol has at least
one version that is not arriving at the same time with the other
versions of the same symbol sent by the other transmitters. It
was proven that these codes conserve a full rank code matrices
in the asynchronous case and yet have a full diversity. A code
example that satisfies these design rules is the 2× 2 full-rate
full-diversity space-time code mentioned in [19]:

D =

[
2+1 + 3+2 − 4+3 − 5+4 −4+1 − 5+2 − 2+3 − 3+4

3+1 + 2+2 + 5+3 − 4+4 −5+1 + 4+2 − 3+3 + 2+4

]
,

(2)
where 2 = 1√

(5+
√
5)(2+

√
2)

; 3 = 1√
(5−

√
5)(2+

√
2)

;

4 = 1√
(5+

√
5)(2−

√
2)

; 5 = 1√
(5−

√
5)(2−

√
2)

.

Suppose that the second row of the matrix D is shifted one
column to the right due to a delay by the second transmitter of
one symbol period. In this case, we still have two versions of
the four symbols arriving to the destination in different time
periods. This code will be referred to as the Damen Code
(DC). Another 2 × 2 delay tolerant code was proposed in
[19] and will be called here the Sarkiss Code (SC). The SC
consists of building a rotated lattice in higher dimension based
on the rotation matrix of the Golden code. Convenient unitary
matrices to obtain the modified code were also given in [19].
However, when combining all the symbols to send, it becomes
more difficult to find the optimal parameters when the number
of transmitters becomes bigger. For instance, for 3× 3 codes
in [18], each symbol sent by a transmitter is the combination
of nine information symbols.
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IV. CONSTRUCTION METHOD OF BDT-STBC

Here, we present a novel design to construct bounded delay
tolerant (BDT) STBC from known non-delay tolerant STBC.
This method is based on the concatenation of 6 code matrices
and the permutation of the new matrix columns in a suitable
manner to have a new order of the columns. The new designed
code ensures a full-diversity for a set of delay profiles that
can occur in the network without a rate reduction because
no repetition is needed. By applying this method on optimal
synchronous codes (i.e. Alamouti code, Golden code, TAST
codes), we ensure the optimality of the new codes in the
synchronous case and also their high performance in the
asynchronous case.

A. Method Description

Let us consider a ! ×" code having the following matrix
of index 7:

X+ =

⎡

⎢⎣

8+
11 . . . 8+

1,
...

. . .
...

8+
!1 . . . 8+

!,

⎤

⎥⎦ .

By concatenating 6 ≥ 2 different matrices X+ (7 =
1, . . . ,6), the new code matrix becomes:

Xc =

⎡

⎢⎢⎢⎢⎣

81
11 . . . 81

1, . . . 8-
11 . . . 8-

1,
...

. . .
... ⋅ ⋅ ⋅

...
. . .

...

81
!1 . . . 81

!,︸ ︷︷ ︸
X1

. . . 8-
!1 . . . 8-

!,︸ ︷︷ ︸
X!

⎤

⎥⎥⎥⎥⎦
.

Then, we permutate the columns of matrix Xc. Let 9 =
1, . . . , " be the positions of the columns in matrices X+ (7 =
1, . . . ,6), the new position 9′ of the column 9 of X+ is:

9′ = (9− 1).6 + 7 .

The permutated matrix will have the following form:

Xpc =

⎡

⎢⎣

81
11 . . . 8-

11 . . . 81
1, . . . 8-

1,
... ⋅ ⋅ ⋅

... ⋅ ⋅ ⋅
... ⋅ ⋅ ⋅

...

81
!1 . . . 8-

!1 . . . 81
!, . . . 8-

!,

⎤

⎥⎦ .

B. Method Discussion and Advantages

By using this construction method, a full transmit diversity
of ! is ensured for a set of delay profiles depending on the
number of concatenated code matrices 6 . The purpose of
putting several coded symbols together and permutating the
code columns is to eventually prevent the versions of the same
symbols from arriving to the destination at the same time in
the case when a delay occurs in the network. By increasing
6 , we extend the number of tolerated delay profiles by the
new bounded delay tolerant codes. Therefore, we can choose
6 with respect to the maximal delay existing in the network.
However, the channel has to keep constant for longer time
than other codes but this time is of the order of some symbol
periods which is a feasible condition. This is a reasonable
assumption in a practical network communication.

Furthermore, bounded delay tolerant codes, based on op-
timal known codes, have full rate in the synchronous case.
When no delays exist in the communication, simple permu-
tations, converse to the ones applied at the transmission, can
be done at the receiver to decode. Hence, each initial code
matrix can be decoded separately by using the known optimal
decoding algorithms for these STBC (i.e., Sphere Decoder
[23]). However, in the asynchronous case, the length of the
received frame increase due to the delay added by the channel.
Therefore, the rate decreases and the BDT codes cannot be full
rate. But, the overall rate of BDT codes improves by increasing
6 and the BDT codes give higher rate than other codes for
asynchronous communications.

V. BDT-STBC FOR TWO TRANSMITTERS

In the case of two transmitters (! = 2), the optimal STBCs
are the Alamouti code for &" = 1 receive antenna, the TAST-
2 and the Golden codes for &" ≥ 2 receive antennas. The
construction method of BDT codes presented above will be
applied to these three codes.

A. BDT-STBC Based on Alamouti Code

Let us consider the concatenation of 6 Alamouti code
matrices A+ (7 = 1, . . . ,6):

A+ =

[
+ +
1 −+∗ +

2

+ +
2 +∗ +

1

]
.

After permutation of the columns, the BDT Alamouti code
matrix is:

Apc =

[
+ 1
1 + 2

1 . . . +-
1 −+∗ 1

2 −+∗ 2
2 . . . −+∗ -

2

+ 1
2 + 2

2 . . . +-
2 +∗ 1

1 +∗ 2
1 . . . +∗ -

1

]
.

A full transmit diversity of two is ensured for an interval of
relative delays Δ = '2 − '1:

Δ ∈ {−Δmax,+Δmax},

with Δmax = 6 − 1. The bounds of this interval of tolerance
are deduced from the fact that the same coded symbols
(i.e. −+∗ 1

2 and + 1
2 ) will not arrive at the same time at the

destination unless the first row is shifted 6 columns to the
left or the second row is shifted 6 columns to the right.

B. BDT-STBC Based on TAST-2 and Golden Codes

For clarity reasons, the TAST-2 and Golden code matrices
will be written in the following manner:

X2
+ =

[
8 +

1 8 +
2

/8
′ +
2 8

′ +
1

]
, (3)

where 8 +
1 = 1√

2
(++

1 + -++
2); 8

+
2 = 1√

2
(++

3 + -++
4); 8

′ +
2 =

1√
2
(++

3 − -++
4); 8

′ +
1 = 1√

2
(++

1 − -++
2),

for the TAST-2 code with - = 0)* and / = 0)*
′
.

And 8+
1 = 1√

5
,(++

1 + -++
2); 8+

2 = 1√
5
,(++

3 + -++
4);

8
′ +
2 = 1√

5
,̄ (++

3 + -̄++
4); 8

′ +
1 = 1√

5
,̄ (++

1 + -̄++
2),

for the Golden code with , and - are the Golden code
parameters and / = ..
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We apply the new construction method on the TAST-2 and
Golden codes. By concatenating 6 code matrices, we obtain:

X2c =

[
81

1 81
2 82

1 82
2 . . . 8-

1 8-
2

/8
′ 1
2 8

′ 1
1 /8

′ 2
2 8

′ 2
1 . . . /8

′ -
2 8

′ -
1

]
.

(4)
After permutating the columns of this matrix, the resulting
matrix of the new codes is:

X2pc =

[
81

1 82
1 . . . 8-

1 81
2 82

2 . . . 8-
2

/8
′ 1
2 /8

′ 2
2 . . . /8

′-
2 8

′ 1
1 8

′ 2
1 . . . 8

′ -
1

]
.

(5)
The bounds of the tolerance interval of the BDT TAST-2 and
BDT Golden codes ares the same as for the BDT Alamouti
code in the previous section.

C. Rank and Determinant Criteria

In this section, we prove that the three new bounded delay
tolerant, presented above and based on optimal synchronous
STBCs, still respect the design criteria of space time codes
even in the presence of a relative delay in a bounded interval.
Actually, the BDT Alamouti code, the BDT Golden code and
the BDT TAST-2 code satisfy the two following propositions.

Proposition 1: Let X be the transmitted codeword, and T
be the erroneously decoded codeword at the destination. The
determinant det

(
A
)

= det
(
(X − T).(X − T)'

)
is non-

zero for all the values of relative delays Δ in the interval of
tolerance. Thus, the BDT code matrix has full rank for these
values of Δ.
The proof of Proposition 1 is drawn in Appendix A.

Proposition 2: The pairwise error probability ℙ(X → T)
of the new BDT code for Δ in the interval of tolerance can
be upper bounded by:

ℙ(X → T) ≤
(

2∏

#=1

:#

)−." (
1

8&0

)−2."

, (6)

where :1 and :2 are the eigenvalues of matrix A.
The proof of Proposition 2 is omitted here for lack of space,
but a similar proof can be found in [20].

In Equation (6), the term 1
8.0

represents the Signal to Noise
Ratio (SNR) of the network. The diversity order 5 can be
deduced from the PEP as the exponent of the SNR [1]; thus,
it is equal to 2.&" for any relative delay Δ in the interval of
tolerance.

D. Minimal Determinant of BDT Golden and BDT TAST-2
Codes

Let us compare the performances of the BDT Golden and
BDT TAST-2 codes for different delay configurations that can
exist in a cooperative network. For the BDT TAST-2 code, we
consider the optimal parameters indicated in [15] and which
are: - = 0)

#
4 and / = 0)

#
6 .

Table I contains the value of the minimal determinant values
for BDT Golden code and BDT TAST-2 code for 4-QAM and
16-QAM symbols.
Comparing the minimal determinants of the two codes, we
conclude the following:

TABLE I
MINIMAL DETERMINANT VALUES FOR BDT GC AND BDT TAST-2

4-QAM 16-QAM

Synchronous 0.8 0.032
BDT GC

Asynchronous 0.8 0.032

Synchronous 0.268 0.011
BDT TAST-2

Asynchronous 1 0.04

∙ For the synchronous case, the BDT Golden code achieves
higher minimal determinant than the BDT TAST-2 code
as it is the case when comparing the Golden code and
the TAST-2 code.

∙ On the contrary, when the network is asynchronous, the
minimal determinant of the BDT TAST-2 code is bigger
than the BDT Golden code.

E. Numerical Results

The simulations results show error rates as a function of
;//&0 in dB which is adjusted as follows:

;/

&0

∣∣∣∣
01

=
;2

&0

∣∣∣∣
01

− 10 log10 = ,

where ;2 is the average signal energy per receive antenna
and = is the code rate in bit per channel use (bpcu). Frame
Error Rate (FER), Symbol Error Rate (SER) and Bit Error
Rate (BER) are used as performance comparison metrics
between the different codes and the exhaustive Maximum
Likelihood (ML) is used for detection at the destination.
For the simulations, = is considered to be the rate at the
transmitters which is calculated in the synchronous case and
does not take into account the added delay by the channels
after transmission.

First let us compare the BDT Alamouti code (BDT AC)
with the Asynchronous Alamouti (AA) for single antenna
destination (&" = 1). The BDT AC with 6 = 3 concatenated
Alamouti code matrices is considered. To have the same
spectral efficiency of = = 2 bpcu, BDT AC sends 4-QAM
symbols +# and AA sends 8-PSK symbols. In Figures 2 and 3,
FER, SER and BER curves are given for BDT AC and AA for
Δ = 0 and Δ = 1 respectively. It can noticed that the BDT AC
outperforms the AA for both synchronous and asynchronous
cases; this is due mainly to the symbols repetition in the AA.

Next, we compare the BDT Golden code (BDT GC) and the
BDT TAST-2 code (BDT TAST-2) with other delay tolerant
codes for ! = 2 transmitters and &" = 2 antennas at
the destination. For the BDT codes, 6 = 2 matrices are
concatenated and 4-QAM symbols ># are used for a data rate
= = 4 bpcu. Figures 4, 5 and 6 show the FER and BER of
the BDT codes designed for 2× 2 cooperative systems and of
the existing delay-tolerant codes: Asynchronous Golden (AG),
Damen Code (DC) and Sarkiss Code (SC). Our proposed
codes outperform almost all the time the latter codes for Δ = 0
and Δ = 1. Actually, the SC gives better FER than the BDT
GC because the frame length of our code is bigger than the
SC which causes more erroneous frames. It is also worth to
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Fig. 2. Error rates comparison between BDT AC and AA for Δ = 0.
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Fig. 3. Error rates comparison between BDT AC and AA for Δ = 1.

note that even if the data rate = is equal for all codes in
the synchronous case, however for Δ = 1 the rate of our
BDT codes become higher due to their bigger frame length
compared to other codes.

VI. BDT-STBC FOR ! > 2 TRANSMITTERS

When more than two transmitters are in the network, an
optimal Threaded Algebraic Space Time (TAST) code can be
used as the base code in order to construct BDT codes.
We first recall the general definition of a TAST code. The
transmitted symbols of a TAST code are finitely generated
from an underlying finite constellation using algebraic number
field constructions [13] [15]. Let us denote , the multidi-
mensional constellation considered (QAM, PAM, etc), and
" = ℚ(.) the field of complex rational numbers. "(-) is an
extension field of degree @ = ["(-) : "] with - an algebraic
number of degree @.
For an arbitrary number of threads A, the TAST codes are
constructed by transmitting a scaled Diagonal Algebraic Space
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Time (DAST) code in each thread. For instance, u% = /% s% =
/% M% x% is transmitted over thread B%(* = 1, . . . , A), where
x% = (+%1, . . . , +%! )& is the information symbol vector sent
over thread B% and +%+ ∈ ,.
Matrix M% is an ! × ! real or complex rotation that
achieves full diversity as a DAST code and is constructed
on the algebraic number field "(-) [24] [25]. The complex
numbers /%(* = 1, . . . , A) are chosen to ensure full diversity
and maximize the coding gain for the composite code by
separating the threads over different algebraic subspaces.
A TAST code is said to be symmetric if the same DAST code
is used in all the threads and thus all the rotation matrices are
the same (M1 = . . . = M3 = M).

Hereafter, we prove that a full diversity order is always
ensured when the new design method is applied to the TAST
Codes for a bounded number of delay profiles. And an
example of the new design method based on a TAST code
for three transmitters is also given.
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A. Rank Criterion

The BDT TAST codes satisfy the following proposition:
Proposition 3: When considering a TAST code as the base

code with the generalized condtruction method of BDT codes,
the determinant of the difference matrix of any two distinct
codewords is always not null for a set of relative delays
(Δ2, . . . ,Δ! ). Thus, the code matrix is full rank and the BDT
TAST code ensures full diversity for these delays profiles.
The proof of Proposition 3 is given in Appendix B.

B. BDT TAST Code for ! = 3 transmitters

The symmetric TAST code for ! = A = 3 and &" ≥ 3 re-
ceive antennas, called here the TAST-3 code, has the following
matrix:

S+ =

⎡

⎢⎣
C+11 /

2
3 C+32 /

1
3 C+23

/
1
3 C+21 C+12 /

2
3 C+33

/
2
3 C+31 /

1
3 C+22 C+13

⎤

⎥⎦ ,

where (C+%1, C
+
%2, C

+
%3)

& = M.(+%1, +%2, +%3)& with * the thread
number (* = 1, 2, 3). M is an optimal 3 × 3 algebraic
rotation matrix and +11, . . . , +33 are the information symbols
belonging to ,. / is an appropriate algebraic or transcendental
number chosen such that the numbers {1, / 1

3 , /
2
3 } are alge-

braically independent over the algebraic number field "(-)
that contains the elements of the rotation matrix M [15].

Next, we give an example of the BDT construction method
on 6 = 3 TAST-3 codes S1, S2 and S3. Thus, the BDT
TAST-3 code has the following matrix for 6 = 3:

Spc=

⎡

⎢⎣

C111 C211 C311 . . . /
1
3 C123 /

1
3 C223 /

1
3 C323

/
1
3 C121 /

1
3 C221 /

1
3 C321 . . . /

2
3 C133 /

2
3 C233 /

2
3 C333

/
2
3 C131 /

2
3 C231 /

2
3 C331 . . . C113 C213 C313

⎤

⎥⎦.

The full diversity of 3.&" is guaranteed for the synchronous
case and for a set of relative delay profiles (Δ2 = '2 −
'1,Δ3 = '3−'1). Basically, the tolerance interval for Δ2 and
Δ3 is {-1, 0, +1}; but other delay profiles are also possible.

TABLE II
TOLERABLE RELATIVE DELAY PROFILES FOR ! = # = 3

Δ" Δ#

0 {-2, -1, 0, 1, 2}
1 {-1, 0, 1, 2}
-1 {-2, -1, 0 ,1}
2 {0, 1, 2}
-2 {-2, -1, 0}

(Δ2,Δ3) = (−1,−3); (−2,−4); (3, 1); (4, 2)
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Fig. 7. Error rates of BDT TAST-3 for ! = "! = 3 and $ = 2.

Table II provides the different relative delay profiles for which
the new code ensures the full diversity: Δ# corresponds to one
of the two relative delays (Δ2 or Δ3) and Δ% to the other one.

C. Numerical Results

Let us consider the TAST code presented is Section VI-B
for three transmitters (! = A = 3) and with three receiving
antennas (&" = 3). Two code matrices (6 = 2) are
concatenated and permutated in order to form the BDT TAST-
3 code.
The same decoding configurations are used as in Section V-E.
In Figure 7, the FER and BER are plotted for synchronous case
(Δ2 = Δ3 = 0) and an asynchronous case (Δ2 = 1,Δ3 = 0).

VII. CONCLUSIONS

Bounded delay tolerant STBC were introduced in this paper.
These codes ensure a full diversity for a synchronous network
and for a set of relative delays between the transmitters and
have optimal rates and better error performance than known
delay tolerant codes. The design concept of such codes are
simple and based on optimal synchronous STBCs. Theoretical
proofs that the new family of codes respect the STBC design
criteria were also given.

APPENDIX A

The following assumptions are considered to make the
derivations clearer without loss of generality:
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∙ We consider that '2 ≥ '1 and hence the relative delay Δ
is positive: Δ = '2 − '1 ≥ 0.

∙ The destination is considered to be synchronous with
relay "1 so that '1 = 0.

Next, we give the proof for the BDT TAST-2 and BDT Golden
codes. In fact, for the BDT Alamouti code, the proof is very
similar.
At the destination, the received signal y can be written as:

y = HX2pc + n,

where

X2pc =

[
81

1 . . . 8-
1 81

2 . . . 8-
2 0Δ

0Δ /8
′1
2 . . . /8

′-
2 8

′1
1 . . . 8

′-
1

]
;

y =

⎡

⎢⎣
D1,1 D2,1 . . . D(2-+Δ),1

...
...

. . .
...

D1,." D2,." . . . D(2-+Δ),."

⎤

⎥⎦ ;

H =

⎡

⎢⎣
ℎ1,1 ℎ2,1

...
...

ℎ1,." ℎ2,."

⎤

⎥⎦;

n =

⎡

⎢⎣
@1,1 @2,1 . . . @(2-+Δ),1

...
...

. . .
...

@1,." @2,." . . . @(2-+Δ),."

⎤

⎥⎦ .

Let T be the erroneously decoded codeword at the receiver;
thus

X2pc −T =

[
0 1
1 . . . 0-

1 0 1
2 . . . 0-

2 0Δ

0Δ /0
′ 1
2 . . . /0

′ -
2 0

′ 1
1 . . . 0

′ -
1

]
is

the codeword difference matrix, with 0 +
# = 8 +

# − " +
# , 0

′ +
# =

8
′ +
# − "

′ +
# , and ( = 1, 2.

Matrix A will be defined as: A = (X2pc−T).(X2pc−T)' .
Hereafter, we prove that det(A) is different from zero for
different values of Δ2 in the interval of tolerance.

1) Synchronous Case (Δ2 = 0): By making converse
permutations on matrix X2pc (5), we reobtain X2c (4) the
concatenation of the 6 matrices X2

+ (3). It is known that
det(X2pc

+) ∕= 0 for TAST-2 code and Golden code. Since(
X2

+ X2
+ ') are positive definite matrices, we use the

determinant inequality in [26]:

det
(
X24 X2

'
4

)
= det

(
-∑

+=1

(
X2

+ X2
+ '
))

≥ min
X2$ ∕=02×2!

-∑

+=1

det
(
X2

+ X2
+ '
)
.

(7)

By considering the codeword difference matrices, it is easy to
deduce from (7) the following:

det
(
A
)
≥ min

-∑
+=1

det
(
B+ B+ '

)
;

with B+ =

[
0+1 0+2

/0
′ +
2 0

′ +
1

]
, and det

(
B+ B+ '

)
≥ 0.

Because X2pc and T are two different codewords,
det
(
BℓBℓ'

)
∕= 0 is verified for at least one value of 7, and

det
(
A
)
= det

(
(X2pc − T).(X2pc − T)'

)
cannot be equal

to zero.

2) Asynchronous Case (Δ2 ∕= 0): In the presence of a
delay, the code matrix cannot be written as a concatenation of
2× 2 code matrices as for the synchronous case.
Thus, we derive the determinant of matrix A for the non-zero
relative delays in the interval of tolerance (0 < Δ2 < 6) with
the assumptions considered here.

We have: A =

[
211 212
221 222

]
, where:

∙ 211 =
2∑

#=1

( -∑
+=1

∣0+# ∣2
)

and 222 =
2∑

#=1

( -∑
+=1

∣0′ +
# ∣2

)
;

∙ 212 =
-−Δ∑
+=1

(0++Δ
1 )(/0

′ +
2 )∗ +

Δ∑
+=1

(0+2)(/0
′ -−Δ++
2 )∗ +

-∑
Δ+1

(0+2)(0
′ +−Δ
1 )∗ and 221 = 2∗12 .

By manipulating the terms of det(A) conveniently, the deter-
minant can be written as the sum of two groups of terms:

∙ The first group terms are products of squared modulus:
∣0 +

# ∣2 ∣0
′ +
# ∣2 with ( = 1, 2 and 7 = 1, . . . ,6 .

∙ The terms in the second group have the following form:
∣F∣2 + ∣@∣2 − 2ℛ

(
G. F∗. @

)
.

ℛ
(
+
)

being the real part of the complex number +.
F and @ are products of 0 +

# and 0
′ +
# ; G can have one of

these values {1, /, /∗} .

The terms in the two groups above are positive and so det(A)
is a sum of positive terms that cannot be all null at the same
time for two different codewords X2pc and T.

APPENDIX B

Consider the complex numbers separating the different
threads /% = /%−1 (* = 1, . . . , A) so that {1, /, . . . , /3−1}
are algebraically independent over "(-). We concatenate 6
TAST code matrices (S1, . . . ,S-) of size !×! each. After
permutation of the columns, S denotes the BDT TAST code
! ×!6 matrix. The new BDT code is also constituted by
A threads and can be written as:

S = G(s1) + / G(s2) + . . .+ /3−1 G(s3), (8)

where G(s%) represents the thread formed by the concatenation
and permutation of the thread s% (* = 1, . . . , A) of the 6
TAST codes.
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For instance, G(s1) of size ! ×!6 has the following form:
⎡

⎢⎢⎢⎢⎢⎣

C111 . . . C-11 0 0 0 0 0 0 0 . . . 0

0 . . . 0 C112 . . . C-12 0 0 0 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 0 0 0 0 . . . 0 C11! . . . C-1!

⎤

⎥⎥⎥⎥⎥⎦
.

The position of symbols C+%# (7 = 1, . . . ,6 and ( = 1, . . . ,! )
of other G(s%) can be deduced by 6 cyclic left shifting to the
lines of G(s%−1).

Let us consider the difference dS between two distinct
codewords S and S′:

dS = S− S′ =
3∑

6=1

/6−1
(
G(s6)− G(s′6)

)
.

Because S and S′ are distinct codewords, they have at least
one different TAST code matrix S7 with (H ∈ {1, . . . ,6}). Let
ℓ denote the largest index for which C7ℓ# ∕= C′7ℓ# but C7ℓ# = C′7ℓ#
for F > ℓ. Then:

dS =
ℓ∑

6=1

/6−1
(
G(s6)− G(s′6)

)
.

To guarantee that the new code matrix is full rank, it suffices
to verify that there exists a square matrix ! ×! that is full
rank, i.e., its determinant is non-zero.
We identify columns 41, . . . , 4! in dS that together form a
submatrix SM whose maximal-/ entries of S7 (those that are
multiples of /ℓ−1) occupy the principal diagonal, i. e., the
diagonal values are: /ℓ−1

(
C7ℓ# − C′7ℓ#

)
for ( = 1, . . . ,! .

For the synchronous case, this submatrix SM is the differ-
ence TAST code matrix dS7 between the two different !×!
TAST codes S7 and S′7 which has a non-zero determinant.
For the asynchronous cases, the submatrix SM determinant
is:

%(/) = J(/) + /!(ℓ−1)
!∏

#=1

(
C7ℓ# − C′

7
ℓ#

)
,

where J(/) is a polynomial in / over "(-) of degree @8.
By code design and for the values of (Δ2, . . . ,Δ! ) in the
set of tolerable delay profiles, the degree of J(/) is @8 <
!(ℓ − 1) and thus %(/) is a non trivial polynomial in / of
degree @9 = !(ℓ−1) over "(-). Because / is not the root of
any nontrivial polynomial of degree < !(! − 1) over "(-);
hence %(/) ∕= 0 and the matrix dS is of full rank which
concludes our proof.
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