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Abstract—In previous works on two-relay two-hop asyn-
chronous cooperative networks we showed that, based on outage
probability derivation, sending the same information frame by
the two relays with a relative delay ensures a diversity order
of two. In this paper, we propose a new practical asynchronous
distributed coding scheme. This code performs a combination
of the symbols with constellation rotation and gives better error
rate performance than other codes. We also prove that it achieves
full-diversity and high-rate.

I. INTRODUCTION

Cooperative communication can be used as an alternative
technique of the multiple-antenna (MIMO) systems to provide
spatial diversity for networks in which nodes cannot have more
than one antenna due to size, cost, or hardware limitations.
Recently, many distributed Space-Time Codes following the
well-known rank and determinant criteria were designed to
provide specific diversity and coding gain by assuming perfect
synchronization among the cooperative nodes or relays. But
due to the distributed nature of the cooperative networks, per-
fect synchronization is difficult, if not impossible, to achieve
among the relays. The lack of perfect delay synchronization
among the cooperative transmitting nodes destroys the re-
quired Space-Time Code (STC) signal structure, and prevents
the transmitted symbols from being successfully detected at
the receiver.

Many recent works have proposed solutions to preserve the
diversity order when the relays have arbitrary relative delays
in transmitting their symbols; for instance, the Orthogonal
Frequency Division Multiplexing (OFDM) technique, or the
design of a Space-Time Bloc Code (STBC) that is delay
tolerant ie. the code matrix remains full rank even in the
presence of a delay between the relays. In [1], to reduce the
impact of synchronization errors, the authors proposed to use
Space-Time Codes designed for frequency-selective channels
to combat these errors; in particular, Time-Reverse Space-
Time Code (TR-STC) and Space-Time OFDM (ST-OFDM)
were considered. The authors of [2] designed a distributive
Space-Frequency code based on OFDM for frequency selective
fading channels. Cyclic prefix is used at the relays to combat
the timing errors and the delay of multipath. However, these
solutions are not suitable for non OFDM systems and they
cause a rate loss that results from adding cyclic prefix.
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On the other hand, many delay tolerant codes were proposed.
In [3], the author showed that codes obtained form general-
ization of the construction in [4] preserve the diversity gain
despite the timing offset among the relay nodes. He also
showed that certain binary STBC derived from the stacking
construction [5] are delay tolerant. In [6], the authors build on
the framework provided by [7] and [8] to design a new class
of STC that shares the advantages of the Threaded Algebraic
Space-Time (TAST) but are also delay tolerant. They refer
to the new codes as “Distributed TAST codes”. However, to
successfully decode these codes, we should have a sufficient
number of antennas at the receiver which means that single
antenna nodes cannot use these codes.

The Alamouti code [9] is optimal for a 2 x 1 MIMO system
but loses its optimality in the presence of asynchronism. In
[10], the authors addressed the synchronization problem by
developing a new receiving scheme for Alamouti’s STBC
cooperative transmission with two asynchronous transmitting
nodes. This new receiving scheme, based on linear prediction,
can tolerate the delay asynchronism. And in [6], a solution
was given to make the Alamouti code delay tolerant.

In this paper, we propose a new 2 x 1 coding scheme
for asynchronous relay networks with single antenna nodes.
Indeed, in a previous work [11], an asynchronous two-relay
two-hop network with one antenna per node was considered. It
was shown that if the relays send the same frame of symbols in
a delayed manner, a full diversity order of two is reached. But
this method is not optimal from the rate point of view, so we
will be able to increase the rate by using the new asynchronous
code that carries out a symbol combination with constellation
rotation. By calculating the pairwise error probability (PEP),
it will be proven that the proposed code has a full rank for
any non-zero relative delay and thus, it has a diversity of two.
Besides, the code parameter is optimized.

The paper is organized as follows. In Section II, the asyn-
chronous relay network is described and a comparison with the
synchronous case is given. The delay tolerance of the Alamouti
code is also discussed. In Section III, we give the structure of
the new asynchronous code and proof that it verifies the rank
and determinant criteria. Some examples of the new code are
given in Section IV and their performances are compared with
other codes. In Section V, we give conclusions.



II. SYSTEM MODEL AND BACKGROUND

We consider a wireless network that consists in a source
S, a destination D, and M relay nodes. All the nodes of
the network have a single antenna, so the relays work in
the half-duplex mode, which prohibits them from transmit-
ting and receiving at the same time. We assume that the
source-destination link is very bad and quasi nonexistent. The
Decode-and-Forward (DF) cooperative protocol is used in the
relay network. The transmission period is divided into two
consecutive phases. In the first phase, the source broadcasts
its message during the first % channel uses. In the second
phase, the source stops transmitting and the relays that decode
successfully the received signals, send their symbols to the
destination in the remaining % channel uses. In what follows,
for the Phase II, two relays that were able to decode the
received signals without errors are selected and named R;
and Ry. The network model is shown in Figure 1. Due to
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The asynchronous two-relay two-hop wireless network model.
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the distributed nature of the network, a different time delay is
introduced on each relay-destination path. 7; and 7o denote
respectively the delays from the relays R; and Ry to the
destination D, and the relative delay A between the two relays
is equal to: A =15 — 7.

The fractional delays are assumed to be absorbed in multipath
(cf. [6]), so the delays 71, 72 and A are integer factors of the
symbol period. The delays are unknown at the relays, but are
known at the destination. The system model is similar to the
usual MISO system with two transmit antennas (one per relay)
and one receive antenna at the destination.

Suppose that the source S transmits the following N-symbol
frame S = Sy, Sa, . . ., Sn] using the codebook C. The relays
R; and R; successfully decode the entire frame. The symbols
S; (i =1,...,N) belong to a certain constellation (M-QAM).
During the second phase, the relays send the modulated signal
S using the codebook C, and the destination receives:

y =HS 4+ n,

n is the Additive White Gaussian Noise (AWGN) at the
destination D with variance Ng. The channels are assumed to
be quasi-static, so the channel transfer matrix H is constant
over a frame interval but is independent from one frame to
another. We denote by h; and hy the channel gains between
the relays R; and Ry respectively and the destination D.
For instance, when 7 > 71, the following frames will be
received at the destination D from the two relays:

Ri: 0 S5 ... S SN 04
Ry: 02 ... S ... S; SN

07 denotes an all-zero vector of length .

This scheme of transmitting symbols by the two relays will be
called the Naive Scheme (NS). In this case, we need (2N +
Tmage) Symbol periods to send the N symbol frame from the
source to the destination; 7,4, being the maximum of the
delays 71 and 7». Because the delays in a network are limited
to a few symbol periods, by taking a long information frame,
we can assume that N — oo in the derivation of the rate r;
of the NS. Thus, we have:

N ~ N 1

= lim —— o~
M N 2N ¥ 7ae 2N 2

So, the rate of the Naive Scheme is not optimal and we can
achieve a higher rate in the network.

A. Synchronous vs Asynchronous Schemes

It is interesting to compare the performance of the NS with
the classical synchronous DF protocol that requires accurate
time synchronization between the relays and different code-
books in the second phase. For the synchronous DF, the relays
R; and R; use respectively the independent codebooks C'* and
C? in Phase II to encode the source signal S sent in Phase I
and they transmit respectively the frames [S1, 53, ..., S}/ and
[S%, 52, ...,S%] synchronously to D.

Figure 2 gives the outage probabilities of the NS and the
synchronous DF. It is clear that the diversity order of the NS
is equal to two when the relative delay A # 0 and it becomes
equal to one if A = 0. Also the NS achieves nearly the same
outage probability performance as the synchronous DF when
A #£0.
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Fig. 2. Outage probabilities of the NS and the synchronous DF protocol.

B. Alamouti Code in Asynchronous Case

The Alamouti code achieves a diversity of two with full
data rate as it transmits two symbols in two time intervals:

T, —I4
As = [ *2] )
T2 :I:l
where z; and x2 are the symbols to transmit; ] and x5 are
the complex conjugate of z; and x5 respectively.



Initially, it was designed for MISO systems with two transmit
antennas and one receive antenna; but a distributive version
of the code can be used in relay networks. In this case, the
source transmits the symbols x; and x5 in the first phase, and
the relays use the Alamouti scheme to transmit in the second
phase. For instance, relay R; sends the first line of matrix Ag
and relay R, sends the second line.

The Alamouti scheme has a full diversity with two perfectly
synchronized transmitting relays but loses this propriety when
the relays are not synchronized. In fact, suppose that the
second relay Rs has a delay of one symbol period (5 = 1).
The code matrix takes, in this case, the following form:

|1 —x3 O
Aa = [0 o J;’{] :

By considering A, the Hermitian transpose of A, we have
det(Aqa.Aa®?) = |21 |? (|z1) + 2 |z2|*) which is equal to zero
if only z; = 0. Thus, the imperfect delay synchronization
between the two relays destroys the Alamouti structure and
makes the destination unable to detect the original signal
successfully; so the Alamouti code is not delay tolerant.

An extension of the Alamouti scheme was given in [6] to make
the code delay tolerant:

R e
$2 :L‘l 1:1
In the sequel, this new form of Alamouti code will be called
the Asynchronous Alamouti (AA).

III. NEW ASYNCHRONOUS CODE

As shown in Section II, for an asynchronous network,
sending the source information by the two relays gives a
diversity of two. Although the NS outage probability perfor-
mance approach that of the synchronous protocol, its rate is
not optimal. Therefore, we design a new coding scheme that
ensures a full diversity for asynchronous relay networks like
the NS but which gives also a higher rate and better error rate
performance than other codes.

The structure of the asynchronous code is given in Section
III-A. We also prove that the new code verifies the rank and
determinant criteria in Sections III-B and III-C by calculating
the pairwise error probability (PEP).

A. Code Structure
To increase the rate, we propose the following code scheme:

Rl : X1 X2 Xz‘ X%

Ry: X X; X, ... Xy

2
Xi = \/ii (S2i—1 + 0 821) and X{ = % (S?i—l - 0 S2l) s
where § = e® andi=1,..., %; N being an even number. In

fact, the use of 6 will result in a constellation rotation. Each
pair of points of the constellation of the symbols S; (j =
1,...,N) will give unique combined symbols X; and X/ but
which are two different points of a new bigger constellation.
Due to this bijective mapping, it will be possible to decode
the combined symbols. The proposed coding scheme creates
also a diversity of constellation because each relay will code

the two symbols (Sz;_; and Sp;) by a different point of the
new constellation. The choice of the parameter o of 6 will be
discussed later.

We calculate the rate of this coding scheme that we will call
the Combination Code (CC). The source sends the combined

symbols [X;1,X2,...,X y ] in Phase I, and thus it needs

% symbol periods to send the N symbols S;. In Phase II,

the relays need (% + Tmaz) Symbol periods to transmit the
information to the destination. This way, (IV + Tynq) Symbol
periods are needed to send the N symbols. The rate of CC is

equal to:
a N

= lim —— >~ 1,

T2 N N e N
Therefore, the Combination Code reaches asymptotically a
full-rate and thus achieves a higher rate than the Naive
Scheme. In the next session, we also show that CC gives better

error rate performance than the NS and the AA.

B. Rank Criterion

Without loss of generality, some assumptions are taken to
make the presentation of the derivations below clearer:
o The relative delay A is smaller than the code length %
o We consider that 72 > 7; and hence the relative delay A
between the two relays is positive: A = 75 — 71 > 0.
o The destination is considered to be synchronous with
relay R; so that 7, = 0.
Let X be the transmitted codeword, and T be the erro-
neously decoded codeword. At the destination, the received
signal y can be written as:

y=HX+n,
where
y=[n v - vyl H=[u h;
X, Xo Xy 04
X=loa x1 x5 .0 x|’
2
n:[nl (%) n%+Aj|

Assuming a Maximum Likelihood (ML) detection, the pair-
wise error probability P(X — T) can be upper bounded by
the exponential bound [12]:

_ 2
P(X — T) < exp (—IEH (HHS(])VCO ol )> (D

where Ey is the expectation over H.
We have |[H.(X - T)|? = H.(X - T).(X - T)?.H¥ | and
€1 €g eN

04

i — 2
X T_|:0A e e ... ey
2

] is the codeword differ-

ence matrix, with e; = X;—T;, e} = X]-T)/; (z =1,..., %)
Let A be the matrix:

A2 (X-T).(X-T)H =
l lex]® +... + ey |?

’ !
efeay1t...+eg_,en
/ * ! *
el.eA+1+...+e%_A.e%

2
|e’1|2+...+|e’%|2



We have
N N N
2 , 3 2 2 " "
det (8) = (lesf? lesf?) + > (ledl? le;12)
i=1 i=1:i#j, \j=1
i#j+A
N_A /N_A
2 2 . '
- Z (€¢-€¢+A-ej .ej+A)
i=1:i%j \ j=1

)

By manipulating the terms of Equation (2) conveniently, the

determinant can be written as the sum of two groups of terms:

o The terms in the first group have the following form:
€4 legal? + 1512 leiral® = 2R (eicfya €/ es1a),
with ¢ different from j. R(x) being the real part of the
complex number .

o The second group terms are products of two squared
modulus: |e;|? |€}|%; i can be equal or different from j.

The terms in the two groups are positive and so det (A) is a

sum of positive terms that cannot be all null at the same time

except for the case when the two codewords X and T are
identical: e, =0 and e =0fori=1,..., 2 ; but this cannot
happen because X and T should be two different codewords.
A being a Hermitian matrix, we can find a unitary matrix
V and a positive real diagonal matrix D with A = VZDV:
At 0 vi1 vz |
D= [0 )\2] . [1121 v22] ’

where \; and A; are the eigenvalues of matrix A and they are

non-zero because det (A) # 0 and A is full rank.

Using the decomposition above, we obtain
H(X-T).X-T)! Hf =H AHY =
Ar.|hivin + h2.v21|2 + Ao h1vi2 + hz.v22|2.

Therefore we have:

B (1K~ TI?) = B (£ Oulhwons + o)) =

=1
2
Z (/\ Ey (|h1 v1i + ha. 'U2z )) 2)‘17

= ©)

because h and ho are Gaussian variables with zero mean and

a variance of for the real dimension, (hy.v1; + h2.vg;) are

also Gaussian varlables with zero mean and a variance of 1

for the real dimension and Egg (|h1.v1; + ho.v2i|?) = 1.
Substituting (3) into (1), we obtain:

Al) ()
8Ny
@
In Equation (4), the term ﬁ represents the Signal to Noise
Ratio (SNR) of the network. The diversity order d can be
deduced from the PEP as the exponent of the SNR [12]. Thus,

we can deduce that the diversity order of the network is equal
to two for any non-zero relative delay and any code length.

C. Determinant Criterion

To satisfy the determinant criterion, the minimum value
of the determinant of matrix A over all pairs of different
codewords X and T should be as large as possible.

The minimum value of det (A) is reached when Eq. (2)
contains the minimum number of non-zero terms because it
is a sum of positive terms; thus the two codewords X and
T should differ in only one symbol X, and so e,, # 0 and

1. # 0 for one value of m (with m € {1, §}).
Therefore, the minimum value of the determinant of A is:

min det (A) )

The maximization of (5) will define the choice of the
optimal angle « of 8 = e*®. In Figure 3, we plot the values
of the minimal determinant (5) in function of a for symbols
S; belonging to 4-QAM and 16-QAM constellations. For 4-
QAM constellation, the maximum of (5) is reached for values
of o in the interval [30°,60°] = [F, §]. On the other hand,
the maximum of (5) for 16-QAM constellation is achieved for
the following values of a: 30°(%), 45°(%) and 60°(%) .

We can also obtain, by mathematlcal derlvatlon the same
optimal values of «. Indeed, Eq. (5) can be written as
| Zam—1—02Zap,|? with Zo,,,_1 and Za,, being the differences
between the S symbols of the two codewords X and T
at positions (2m — 1) and (2m) respectively. To have the
optimal o, we need to calculate the values of 4 that maximize
| Zam—1 — 0% Zay,|? for all possible pairs of Za,,_; and Zap,.

= lem|*.lep” -

Minimum determinant values in function of the rotation angle o
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- - — 16-QAM

Minimum determinant values for 4-QAM
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Fig. 3. Minimum determinant values in function of the rotation angle o for
4-QAM and 16-QAM symbols S;.

IV. CODE EXAMPLES AND NUMERICAL RESULTS

Let us consider some examples of the new designed code
and compare their performance to other delay tolerant schemes
presented above in this paper.

For instance, we have the following matrices for the Com-
bination Code (CC) and the Naive Scheme (NS) for A = 1:



cc, = X1 Xo X3 X4 0 ]; NS=[Si S5 S5 S, 0

0 X{ X X5 X} 0 51858581
We have X; = So;_1 + 0S2; and le = S2;_1 — 0S5; with
0 = e'% and i = 1,...,4. For the CC, a total number of
N = 8 symbols S; that belong to a 4-QAM constellation is
used. And for the NS, S/(i = 1,...,4) belongs to a 16-QAM
constellation to have the same spectral efficiency.

In Figure 4, we simulate the Frame Error Rate (FER), the
Symbol Error Rate (SER) and the Bit Error Rate (BER) for
NS and CC with A = 1 and by using an exhaustive Maximum
Likelihood (ML) detector. We can see clearly that CC gives
better error rate performance than NS.

Error rates comparison between Naive Scheme and Combination Code

Error Rates
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— ¥ — FER, CC, A=1 piitciiiadisainis stniiietiild H
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- ¥ - BER, CC, A=1
£ X :
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Fig. 4. Error rates of NS and CC for N =8 and A = 1.

. Performance comparison of Asynchronous Alamouti and Combination Code
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Fig. 5. Error rates of AA and CC for A =1, 2.

Next, we compare the performance of the CC with the delay
tolerant version of the Alamouti code (AA). The two codes
have the following matrices:

-3 —z3 04

_X1X2X30A' T
CCz = [OA x x, x50 AT oA o o o

Here, X; = S2;—1+6852; and X| = S2;—1—6S2; with = e'1
andi=1,...,3.

To have the same spectral efficiency, S;(j = 1,...,N = 6)
belongs to a 4-QAM constellation and z; (7 = 1, 2) belongs to
a 64-QAM constellation.

In Figure S, we plot the FER and BER for two values of the
relative delay A = 1, 2 with exhaustive ML detection. We can
notice that the new code designed in this paper gives better
error rate performance than the Asynchronous Alamouti and
that the difference in performance becomes greater when the
relative delay A increases.

V. CONCLUSIONS

In this paper, we proposed a new coding scheme for
asynchronous relay networks with single antenna nodes. The
new code is based on constellation rotation and symbol
combination. It was shown theoretically that it ensures a full
diversity and a high rate. Examples of the code construction
and comparison of performance with other codes were also
given. In future work, we will propose a new coding scheme
that gives a full diversity for synchronous and asynchronous
relay networks.
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