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Abstract—For distributed antennas based communications, the
received signal from different sources can be asynchronous due to
the propagation or processing delays. This can destroy the space
time block code properties designed initially for synchronous
case. In this paper, we introduce the delay-diversity tradeoff
showing that it is possible to preserve the maximum diversity of
a code without reducing its rate as long as the relative delays are
in a designed delay tolerance interval. New delay tolerant block
codes are proposed and it is shown that they achieve full diversity
and optimal rates for both synchronous and asynchronous cases.
Their performances are compared to other delay tolerant codes.

I. INTRODUCTION

Recent research works addressed the cooperative communi-
cation as a promising technique for future wireless networks.
They propose to use distributed antennas as an alternative tech-
nique of multiple-antenna (MIMO) systems to provide spatial
diversity where network nodes cannot have more than one
antenna due to size, cost, or hardware limitations. Moreover,
many distributed Space-Time Codes following the well-known
rank and determinant criteria [1] were designed to provide spe-
cific diversity and coding gain by assuming perfect synchro-
nization among the cooperative nodes or relays. However, due
to the distributed nature of the cooperative networks, perfect
synchronization is difficult, if not impossible, to achieve. The
lack of perfect delay synchronization among the cooperative
transmitting nodes destroys the required Space-Time Code
signal structure leading to reduction of the achievable diversity.

Several codes preserving these properties in the case of
lack of synchronization have been proposed and called “delay
tolerant codes”. In [2], the author showed that codes obtained
from generalization of the construction in [3] preserve the
diversity gain despite the timing offset among the relay nodes.
He also showed that certain binary Space-Time Block Codes
(STBC) derived from the stacking construction [4] are delay
tolerant.
In [5], the authors build on the framework provided by [6] and
[7] to design a new class of STBC that shares the advantages
of the Threaded Algebraic Space-Time (TAST) codes and are
also delay tolerant. Their proposed codes are referred to as
“Distributed TAST codes” with length growing exponentially
with the number of relays. However, to achieve a full diversity
for any delay, the transmission rate is reduced by the repetition

of some symbols. This solution has been applied to the optimal
synchronous codes such as the Alamouti code [8] and the
Golden code [9]. In [10], a new 2 × 2 delay tolerant code
is proposed based on modification of the Golden code by
application of convenient unitary matrices. The idea is to
combine differently all the symbols to send, for each antenna
and each transmission.

Previous works looked for a relevant solution for any delay
value and this usually results in a loss of rate. However, in
practical wireless systems the delays are generally bounded,
which motivates our work. In this paper, we introduce a delay-
diversity tradeoff showing that unlike in [5] it is possible to
build a space-time block code achieving the full diversity
without any rate reduction as long as the relative delays
between the received signals from the distributed antennas
belong to a defined set of delays. The new design method
of the distributed STBC is described. It is based on pair
symbol combinations and permutations which guarantees the
STBC high rate (no repetition is needed). Depending on these
previous operations the bounds of delay tolerance interval
centered on zero (i.e. synchronous case) are deduced.
Besides, for asynchronous case, full-rate cannot be achieved
because of the channel uses introduced by the delays. By
increasing the length of the new designed codes, the width
of the delay tolerance interval is expanded, also the rate loss
is reduced and optimal rates approaching the full rate can be
achieved. We prove analytically that the maximum diversity
is achieved for any delay in the tolerance interval. Moreover,
the parameters of the proposed codes are optimized for syn-
chronous and asynchronous cases. Some new code examples
are shown to outperform the known delay tolerant STBC. To
the best of our knowledge no previous works proposed optimal
rate, full diversity and bounded delay tolerant codes.

The paper is organized as follows. In Section II, the system
model is described. The delay tolerance of some known STBC
is discussed in Section III. Section IV introduces the delay-
diversity tradeoff. The new delay tolerant codes structure and
the proof that they verify the rank and determinant criteria
are given in Section V. The code parameters are optimized
in Section VI. Some examples of the new codes are given in
Section VII and their performances are compared with other
known codes. In Section VIII, we give conclusions.
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II. SYSTEM MODEL

We consider a wireless system that consists in two trans-
mitters T1 and T2 with one antenna each, and a destination D
with nr antennas. The network model is shown in Figure 1.

Fig. 1. The asynchronous two-transmitter wireless network model.

Due to the distributed nature of the network, a different time
delay is introduced on each transmitter-destination path. τ1 and
τ2 denote respectively the delays from the transmitters T1 and
T2 to the destination D, and the relative delay ∆ between the
two transmitters is equal to: ∆ = τ2 − τ1.
The fractional delays are assumed to be absorbed in multipath
(cf. [5]), so the delays τ1, τ2 and ∆ are integer factors of the
symbol period. The delays are unknown at the transmitters, but
are known at the destination. The system model is equivalent
to a distributed MIMO system with two transmit antennas (one
per transmitter) and nr receive antennas.

Suppose that the two transmitters want to transmit the
following N -symbol frame S = [S1, S2, . . . , SN ] to the
destination. The signal y received by the destination is:

y = H S + n ,

n is the Additive White Gaussian Noise (AWGN) at the
destination D with variance N0. The channel is assumed to be
quasi-static, so the channel transfer matrix H is constant over
a frame interval but is independent from one frame to another.
We denote by h1,i and h2,i the channel gains between T1 and
T2 respectively and the ith antenna of D with i = 1, . . . , nr.

This system model represents a general cooperative network
model with the transmitters being two relay nodes or two base
stations or two mobiles able to relay etc...

III. STBC DELAY TOLERANCE

We propose to discuss first some examples of optimal
synchronous STBC to introduce the “delay tolerance” notion
and next to remind some known solutions that make them
delay tolerant. For 2 × 1 MISO scheme, the Alamouti code
[8] is designed and proved to achieve a diversity of two with
full data rate as it transmits two symbols in two time intervals:

As =
[
x1 −x∗

2

x2 x∗
1

]
,

where x1 and x2 are the symbols to transmit; x∗
1 and x∗

2 are
the complex conjugate of x1 and x2 respectively.
However, this scheme has a full diversity with two perfectly

synchronized transmitters and it loses this property when the
transmitters are not synchronized. In fact, suppose that the
second transmitter T2 has a delay of one symbol period (τ2 =
1). The code matrix takes, in this case, the following form:

Aa =
[
x1 −x∗

2 0
0 x2 x∗

1

]
.

By considering Aa
H the Hermitian transpose of Aa, we have

det(Aa.Aa
H) = |x1|2 .(|x1|2+2 |x2|2) which is equal to zero

if only x1 = 0. Thus, the imperfect delay synchronization
between the two transmitters destroys the Alamouti structure
and makes the destination unable to detect the original signal
successfully; so the Alamouti code is not delay tolerant.

The Golden code is an optimal Space-Time code for two
transmit and two receive antennas MIMO systems [9]. Its code
matrix is:

Gs =
1√
5

[
α(x1 + θx2) α(x3 + θx4)

ı ᾱ (x3 + θ̄x4) ᾱ (x1 + θ̄x2)

]
,

where ı =
√
−1, θ = 1+

√
5

2 , α = 1 + ı(1 − θ), θ̄ = 1 − θ,
and ᾱ = 1 + ı θ. However, it is not delay tolerant as can be
seen by shifting the second row one column and then setting
the entries x1 and x2 to zero.

Delay tolerant versions of the Alamouti code and the Golden
code were proposed in [5]. The idea consists in repeating the
second column of the codes. For instance, the delay tolerant
version of the Alamouti code is:

Ad =
[
x1 −x∗

2 −x∗
2

x2 x∗
1 x∗

1

]
.

In the sequel, this new form of Alamouti code will be called
the Asynchronous Alamouti (AA).
Also, [5] proposed a new delay tolerant for a variation of the
Golden code that will be called hereafter the Asynchronous
Golden (AG):

Cd =
1√

2(1 + r2)

[
x1 + ırx4 rx2 + x3 rx2 + x3

x2 − rx3 ırx1 + x4 ırx1 + x4

]
,

where r = θ − 1.
Although these new versions of the Alamouti code and the
Golden code are delay tolerant since they achieve the maxi-
mum diversity for any shifted version of the code matrix, they
suffer from a rate loss due to the repetition.

IV. DELAY-DIVERSITY TRADEOFF

Suppose that the two transmitters send the same frame S of
length N . For instance, when τ2 > τ1, the following frames
will be received at the destination D:

T1 : 0τ1 S1 . . . Si . . . SN 0∆

T2 : 0τ2 . . . S1 . . . Si . . . SN

0τ denotes an all-zero vector of length τ .
It can be shown by outage probability derivation [11], that

this scheme gives a full transmit diversity of two when ∆ ̸= 0
and of one if ∆ = 0. The outage probability results for nr = 1
are illustrated in Figure 2. This means that this scheme is

7



fully delay tolerant except for synchronous case and it has
this property by the rule that all versions of one symbol should
not arrive at the same time to the destination. However, this
scheme is not practical because system delays are centered on
zero and hence include the synchronous case.
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Fig. 2. Outage probability results for ∆ = 0 and ∆ ̸= 0.

To ensure a full diversity when the transmitters are syn-
chronous, we propose to decompose the information frame
of length N > 2 into two sub-frames named P1 and P2

of respective length l1 and l2. The first transmitter sends the
information frame without changes (P1 then P2) and the
second transmitter permutes the order of the two parts (P2

then P1) and multiply P2 by a coefficient φ (with |φ|2 = 1)
to guarantee a non-zero determinant for the difference of every
two distinct scheme frames when ∆ = 0. The transmitting
scheme becomes:

T1 : P1 P2

T2 : φ P2 P1

Using these operations, we can ensure (as shown in next
section) a full transmit diversity of two for an interval of
relative delays ∆ ∈ {−l2 +1, . . . , 0, . . . , l1 −1}. This interval
will be called the “interval of tolerance”.
To have a symmetric interval, we choose the length of the parts
P1 and P2 to have the closest possible values. Therefore, we
choose the following values for the two parts length:

• l1 = l2 = N
2 , when N is an even number,

• l1 = [N
2 ], l2 = [N

2 ] + 1 or the opposite, when N is an
odd number; [x] being the integer part of x.

Thus, the interval of tolerance becomes for even N ,
{−∆max,+∆max}, with ∆max = N

2 − 1. For odd N , the toler-
ance interval becomes {−∆max, (+∆max − 1)} or {(−∆max +
1),+∆max} respectively for l1 = [N

2 ] or l1 = [N
2 ] + 1, with

∆max = [N
2 ].

A relationship exists between the bounds of the interval
of tolerance and the length of the frame used to execute
the permutation. So, depending on the nature of the network
and the maximum relative delay that can exist between the
two transmitters, we can expand the width of the interval of
tolerance by increasing the frame length. This reflects a trade-
off between the tolerated delays and the maximum achievable

diversity. In addition, when increasing the length, optimal rates
approaching the full rate are achieved for the asynchronous
case because the rate loss caused by the additional channel
uses induced by the delays will be less important compared
to the useful frame length.

V. NEW DELAY TOLERANT CODES

The new coding scheme will ensure a full diversity for
synchronous and asynchronous distributed networks. It also
has a high rate and gives better error rate performance than
the other delay tolerant codes introduced in previous sections.
The structure of the proposed codes is given in Section V-A.
We also prove that the new code family verifies the rank and
determinant criteria in Sections V-B.

A. Codes Structure

To increase the rate, we propose to perform a pair combina-
tion on an even number N of symbols: S1, . . . , SN . The two
transmitters combines each consecutive pair of symbols S2i−1

and S2i in the following manner:
• Xi = f1

(
aS2i−1 + bS2i

)
for the first transmitter T1,

• X ′
i = f2

(
cS2i−1 + dS2i

)
for the second transmitter T2,

with i = 1, . . . , N ′. The new frame length is N ′ = N
2 .

f1 and f2 are the scaling factors to normalize the power.
Using the permutation strategy presented in Section IV on

the new combined symbols, the new codes scheme will have
the following form:

X =

[
X1 . . . X[ N′

2 ] X[ N′
2 ]+1 . . . XN ′

φX ′
[ N′+1

2 ]+1
. . . φX ′

N ′ X ′
1 . . . X ′

[ N′+1
2 ]

]
.

By choosing appropriate values for the parameters (a, b, c,
d), each pair of points in the constellation of the symbols
Sj (j = 1, . . . , N) will be combined into unique symbols Xi

and X ′
i . In this way, it will be possible to decode the combined

symbols due to the bijective mapping. The proposed coding
scheme can create a diversity of constellation if the combined
symbols Xi and X ′

i are different points of a new constellation.
For instance, the parameters of the new coding scheme, named
the Permutation Code (PC), can have the following values:

• PC1: a = 1, b = θ, c = 1, d = −θ and f1 = f2 = 1√
2

;

where θ = eıα and φ = eıα′
. α and α′ are rotation angles.

• PC2: a = α, b = αθ, c = ᾱ, d = ᾱθ̄ and f1 = f2 = 1√
5

;
where α and θ are the coefficient of the Golden code and
φ = ı.

The code matrix for a code length N ′ = 6 has this form:

X6 =
[

X1 X2 X3 X4 X5 X6

φX ′
4 φX ′

5 φX ′
6 X ′

1 X ′
2 X ′

3

]
.

B. Rank Criterion

Let X be the transmitted codeword, and T be the erro-
neously decoded codeword at the destination.

Proposition 1: The determinant det
(
(X−T).(X−T)H

)
is

non-zero for all the values of relative delays ∆ in the interval
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of tolerance related to the code length N ′. Thus, the code
matrix has full rank for these values of ∆.
The proof of Proposition 1 is drawn in Appendix A where
different techniques are used depending on the values of ∆
(synchronous or asynchronous) and N ′ (even or odd).

Proposition 2: The pairwise error probability P(X → T)
of the new delay tolerant codes for ∆ in the interval of
tolerance can be upper bounded by:

P(X → T) ≤
(

2∏

i=1

λi

)−nr (
1

8N0

)−2nr

. (1)

The proof of Proposition 2 is drawn in Appendix B.
In Equation (1), the term 1

8N0
represents the Signal to Noise

Ratio (SNR) of the network. The diversity order d can be
deduced from the PEP as the exponent of the SNR [1]; thus,
it is equal to 2.nr for any relative delay ∆ in the interval of
tolerance.

VI. CODE PARAMETERS OPTIMIZATION

The determinant criterion states that the minimum value of
the determinant of matrix A = (X − T).(X − T)H over all
pairs of different codewords X and T should be as large as
possible [1]. Here, we optimize the code parameters θ and
φ that maximize the minimum value of det

(
A
)

derived in
Appendix A.

It is important to remind that the parameter φ is used to
prevent the determinant from becoming equal to zero when
∆ = 0 and thus this parameter does not interfere with the
code performance when ∆ ̸= 0.

A. Synchronous Case

For an even code length N ′, based on the derivation in
Appendix A-1, the minimum value of the code determinant is
equal to the minimum value of det

(
Bm.BH

m

)
with:

Bm =

[
Xm XN′

2 +m

φX ′
N′
2 +m

X ′
m

]
.

The code parameters that maximizes the value of
det
(
Bm.BH

m

)
for M-QAM symbols S are those of the

Golden code (PC2).
For an odd code length N ′, the minimum value of det

(
A
)

is reached when the minimum number of positive terms (4)
are not null. The optimized parameters can be obtained by
maximizing this minimum determinant.

B. Asynchronous Case

Based on Appendix A-2, for N ′ even or odd, the minimum
value of the code determinant is reached when it contains the
minimum number of terms because it is a sum of positive
terms; thus the two codewords X and T should differ in only
one symbol at position m: em = Xm − Tm ̸= 0 and e′m =
X ′

m − T ′
m ̸= 0 (with m ∈ {1, N ′}).

Therefore, the minimum value of the determinant of A is:

min det (A) = |em|2.|e′m|2 . (2)

The maximization of (2) will define the choice of the
optimal code parameters. Here, the configuration of parameters
PC1 gives higher values than those of PC2 and we need only to
optimize the value of θ = eıα. In Figure 3, we plot the values
of the minimal determinant (2) in function of α for symbols
Si that belong to 4-QAM and 16-QAM constellations. For 4-
QAM constellation, the maximum of value 1 (0.8 with PC2)
is reached for values of α in the interval [30◦, 60◦] ≡ [π

6 , π
3 ].

On the other hand, the maximum of value 0.04 (0.032 with
PC2) for 16-QAM constellation is achieved for the following
values of α: 30◦(π

6 ), 45◦(π
4 ) and 60◦(π

3 ) .
We can also obtain, by mathematical derivation, the same
optimal values of α. Indeed, Eq. (2) can be written as
|Z2m−1−θ2Z2m|2 with Z2m−1 and Z2m being the differences
between the S symbols of the two codewords X and T at po-
sitions (2m−1) and (2m) respectively. To have the optimal α,
we calculate the values of θ that maximize |Z2m−1−θ2Z2m|2
for all possible pairs of Z2m−1 and Z2m, and then we get the
same values of α as in the simulations.
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Fig. 3. Minimum determinant values for PC1 parameters with ∆ ̸= 0.

VII. CODE EXAMPLES AND NUMERICAL RESULTS

Here, we compare the performance of the new delay tolerant
Permutation Code (PC) to the Asynchronous Alamouti (AA)
for nr = 1 and to the Asynchronous Golden (AG) for nr = 2.

Let us consider the PC for a length code N ′ = 6: X6.
To compare to the AA, we use the PC1 parameters with
θ = φ = eı π

2 . The symbols Sj sent using the PC belong to
the BPSK constellation. To have the same spectral efficiency,
the AA sends symbols xi that belong to the 8-PSK constel-
lation. On the contrary, when compared to the AG, the PC2
parameters are used and the symbols Sj belong to a 4-QAM
constellation. AG sends symbols xi that belong to a 8-PSK
constellation.

In Figures 4 and 5, we plot the Frame Error Rate (FER)
and the Bit Error Rate (BER) for PC, AA and AG for
∆ = 0, 1 . For the detection, the exhaustive Maximum
Likelihood (ML) is used. From the simulation results, we
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can notice that the PC designed in this paper outperforms the
Asynchronous Alamouti and the Asynchronous Golden when
the two transmitters are synchronized or not. This is mainly
due to the avoidance of symbol repetition in the PC which
increases its rate in comparison to the other codes and thus
leads to better error rate performances.
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Fig. 4. Error rates comparison between PC and AA for nr = 1.
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VIII. CONCLUSIONS

In this paper we proposed a new family of delay tolerant
codes for two distributed transmitting antennas. These codes
are shown to achieve the maximum diversity for a bounded
interval of delays including the synchronous case. The code
parameters optimization is addressed and solutions are pro-
posed depending on the synchronous and asynchronous cases.
The performances are shown to be better compared to some
known delay tolerant codes. In future work, we will generalize
these design rules to propose new bounded delay tolerant
codes for any nt transmitting antennas.

APPENDIX A

Without loss of generality, some assumptions are taken to
make the presentation of the derivations below clearer:

• We consider that τ2 ≥ τ1 and hence the relative delay ∆
between the two transmitters is positive: ∆ = τ2−τ1 ≥ 0.

• The destination is considered to be synchronous with
transmitter T1 so that τ1 = 0.

At the destination, the received signal y can be written as:
y = H X + n,

where

X =

[
X1 X2 . . . XN ′ 0∆

0∆ φX ′
[ N′+1

2 ]+1
φX ′

[ N′+1
2 ]+2

. . . X ′
[ N′+1

2 ]

]
;

H =

⎡

⎢⎣
h1,1 h2,1

...
...

h1,nr h2,nr

⎤

⎥⎦; n =

⎡

⎢⎣
n1,1 n2,1 . . . n(N ′+∆),1

...
...

. . .
...

n1,nr n2,nr . . . n(N ′+∆),nr

⎤

⎥⎦ ;

y =

⎡

⎢⎣
y1,1 y2,1 . . . y(N ′+∆),1

...
...

. . .
...

y1,nr y2,nr . . . y(N ′+∆),nr

⎤

⎥⎦ .

Let T be the erroneously decoded codeword at the receiver;
thus

X−T=

[
e1 . . . e[ N′

2 ] e[ N′
2 ]+1 . . . eN ′ 0∆

0∆ φ e′
[ N′+1

2 ]+1
. . . φ e′N ′ e′1 . . . e′

[ N′+1
2 ]

]

is the codeword difference matrix, with ei = Xi − Ti, e′i =
X ′

i − T ′
i ;
(
i = 1, . . . , N ′).

Let A be the matrix:

A = (X − T).(X − T)H =
[
a11 a12

a21 a22

]
, (3)

where:
• a11 = |e1|2 + . . . + |eN ′ |2 ;

• a12 =
(
φ∗e

′∗
[ N′+1

2 ]+1
. e∆+1

)
+ . . . +

(
e
′∗
[ N′+1

2 ]−∆
. eN ′

)
;

• a21 = a∗
12 ;

• a22 = |e′1|2 + . . . + |e′N ′ |2 .

Hereafter, we prove that det(A) is different from zero for
different values of ∆ in the interval of tolerance.

1) Synchronous Case (∆ = 0): First, let us consider the
case when the code length N ′ is even. By permuting the
columns of the code matrix X, it will take the following form:

X=

[
X1 XN′

2 +1 . . . Xi XN′
2 +i . . . XN′

2
XN ′

φX ′
N′
2 +1

X ′
1 . . . φX ′

N′
2 +i

X ′
i . . . φX ′

N ′ X ′
N′
2

]
.

This way, the code matrix will be the concatenation of 2 × 2

matrices Bi =

[
Xi XN′

2 +i

φX ′
N′
2 +i

X ′
i

]
, with (i = 1, . . . , N ′

2 ).

We have det(Bi) = Xi.X ′
i − φXN′

2 +iX
′
N′
2 +i

̸= 0 except
when all the symbols are null, and this is due to φ.

Since BiBH
i are positive definite matrices, we use the deter-

minant inequality in [12]:
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det
(
XXH

)
= det

( N′
2∑

i=1

(
BiBH

i

))
≥ min

X̸=02×N′

N′
2∑

i=1

det
(
BiBH

i

)
.

By considering the codeword difference matrices, it is easy to
deduce the following:

det
(
A
)
≥ min

N′
2∑

i=1

det
(
DiDH

i

)
; with Di =

[
ei eN′

2 +i

φ e′N′
2 +i

e′i

]
,

and det
(
DiDH

i

)
= |ei|2 |e′i|2 + |eN′

2 +i|
2 |e′N′

2 +i
|2 −

2 R
(
φ.e∗i .e

′∗
i .eN′

2 +i.e
′
N′
2 +i

)
≥ 0.

R(x) being the real part of the complex number x.
Because X and T are two different codewords, det

(
DiDH

i

)
̸=

0 is verified for at least one value of i, and det
(
A
)

=
det
(
(X − T).(X − T)H

)
cannot be equal to zero.

On the contrary, when N ′ is odd, we cannot decompose the
code matrix as done above. By calculating the determinant of
A based on Equation (3) and after some suitable grouping,
det(A) can be written as the sum of positive terms having
the following form:

|ei|2 |e′j |2 + |ek|2 |e′ℓ|2 − 2 R
(
p.e∗i .e

′∗
j .ek.e′ℓ

)
, (4)

where i can be equal or different from j but k is different from
ℓ, and p can have one of these values {1,φ,φ∗}. The terms (4)
cannot be all null at the same time because the codewords X
and T should differ in at least one symbol, so det(A) cannot
be equal to zero.

2) Asynchronous Case (∆ ̸= 0): Here, for N ′ even or odd,
the code matrix cannot be decomposed into submatrices for
all the asynchronous values of ∆ in the interval of tolerance;
so we derive the determinant of matrix A (Eq. (3)) for
these values of ∆. By manipulating the terms of det(A)
conveniently, the determinant can be written as the sum of
two groups of terms:

• The terms in the first group are similar to (4).
• The second group terms are products of two squared

modulus: |ei|2 |e′j |2; i can be equal or different from j.
The terms in the two groups above are positive and so det(A)
is a sum of positive terms that cannot be all null at the same
time except for the case when the two codewords X and T are
identical: ei = 0 and e′i = 0 for i = 1, . . . , N ′; but this cannot
happen because X and T should be two different codewords.

APPENDIX B

Assuming a Maximum Likelihood (ML) detection, the pair-
wise error probability P(X → T) can be upper bounded by
the exponential bound [1]:

P(X → T) ≤ exp

(
−

EH

(
∥H.(X − T)∥2

)

8N0

)
, (5)

where EH is the expectation over H.

∥H.(X − T)∥2 = H.(X − T).(X − T)H .HH = H.A.HH .
A being a Hermitian matrix, we can find a unitary matrix

V and a positive real diagonal matrix D with A = VHDV:

D =
[
λ1 0
0 λ2

]
, V =

[
v11 v12

v21 v22

]
;

where λ1 and λ2 are the eigenvalues of matrix A. We shall
note that λ1 and λ2 are different from zero for relative delays
in the interval of tolerance because det(A) is not null for these
values of ∆ as seen in Appendix A.
Therefore we have:

EH

(
∥H.(X − T)∥2

)
= EH

(
H.VH .D.V.HH

)
=

EH

( 2∑

i=1

nr∑

j=1

λi |βji|2
)

=
2∑

i=1

nr∑

j=1

λi EH

(
|βji|2

)
,

(6)

where βji = hj .vi; hj being the jth row of H and vi the
ith column of V. Because the terms of vi constitute a base
in C2 and the hi,j are Gaussian variables with zero mean and
a variance of 0.5 for the real dimension; thus, βji are also
Gaussian variables with zero mean and a variance of 0.5 for
the real dimension and EH

(
|βji|2

)
= 1.

Substituting (6) into (5), we obtain:

P(X → T) ≤
nr∏

j=1

exp

(
− 1

8N0

2∑

i=1

λi

)

≤

⎛

⎜⎜⎝
1

2∏
i=1

(
1 + λi

8N0

)

⎞

⎟⎟⎠

nr

≤
(

2∏

i=1

λi

)−nr (
1

8N0

)−2nr

.
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