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Abstract—In distributed antenna networks, the received signal
from different transmitters can be asynchronous due to the
processing or propagation delays. This destroys the space time
code properties designed initially for synchronous case. We in-
troduce, in this paper, a new design method to construct optimal-
rate delay-tolerant codes from existing synchronous codes for a
certain number of delay profiles that can exist in the network.
Some construction examples based on optimal known codes are
proposed and it is shown that they achieve full diversity for
synchronous and some asynchronous cases. Their performance
is compared to other delay tolerant codes.

I. INTRODUCTION

The space-time coding technique has shown to be very
useful when multiple antennas exist at the transmitter and/or
the receiver because it increases the diversity order and the rate
of these systems. In order to give optimal performances, the
Space-Time codes (STC) need to follow the well-known rank
and determinant criteria [1]. Recently, distributed versions of
STC were used in cooperative communications in which the
nodes of a network may help each other by relaying their
information to the destination. Unlike the multiple-antenna
(MIMO) systems where the antennas are collocated at the
same device, the antennas in cooperative systems are spatially
distributed on different nodes. This new configuration can
result in an asynchronism due to the difference in local
oscillators and the different propagation delays. The lack of
perfect synchronization among the cooperative transmitting
nodes destroys the required Space-Time Code signal structure
leading to the reduction of the achievable diversity and thus
deteriorates the code performance. Therefore, the optimal
synchronous STC designed for MIMO systems are no longer
valid for asynchronous cooperative communications.

Lately, several codes and design solutions were investigated
in the purpose of preserving the properties of STC in the
presence of asynchronism. These types of codes are called
“delay tolerant”. In [2], the author showed that codes obtained
from generalization of the construction in [3] preserve the
diversity gain despite the timing offset among the relay nodes.
He also showed that certain binary Space-Time Block Codes
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(STBC) derived from the stacking construction [4] are delay
tolerant. In [5], the authors built on the framework provided
by [6] and [7] to design a new class of space time codes based
on the Threaded Algebraic Space-Time (TAST) codes and are
also delay tolerant. Their proposed codes are referred to as
“Distributed TAST codes” with length growing exponentially
with the number of relays. However, to achieve a full diversity
for any delay, the transmission rate is reduced by the repetition
of some symbols. This solution has been applied to the optimal
synchronous codes such as the Alamouti code [8] and the
Golden code [9]. In [10], a new 2 × 2 delay tolerant code
is proposed based on modification of the Golden code by
application of convenient unitary matrices. The idea is to
combine differently all the symbols to send, for each antenna
and each transmission.

Previous works looked for a relevant solution for any delay
value and this usually results in a loss of rate and an increasing
complexity at the receiver. However, in practical wireless
systems the delays are generally bounded, which motivates
our work. In this paper, we give a new design construction,
based on optimal synchronous codes, to build delay tolerant
codes for certain delay profiles but without decreasing the rate.
The new design method is based on the concatenation of sev-
eral code matrices and the reordering of the code columns by
permutations. The new codes will be referred to as “Bounded
Delay Tolerant STBC”. A construction example based on the
Golden code for two transmitting nodes is considered. It is
shown that the new design code achieves the maximal diversity
for any delay in a certain tolerance interval. Moreover, the
bounded delay tolerant code verifies the rank and determinant
criteria and it outperforms some known delay tolerant STBC.
For more than two transmitters, TAST codes are used to build
new bounded delay tolerant codes.

The paper is organized as follows. In Section II, the system
model is described. The delay tolerance of some known STBC
and existing solutions are discussed in Section III. The new
construction method of Bounded Delay Tolerant STBC is
introduced in Section IV. Design examples are given for two
transmitters in Section V and for more than two transmitters
in Section VI. In Section VII, we give conclusions.
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II. SYSTEM MODEL

We consider a wireless system with M transmitters
T1, T2, . . . , TM having one antenna each, and a destination
D with N antennas. The network model is shown in Figure
1. Due to the distributed nature of the network, a different

Fig. 1. Asynchronous wireless network with M transmitters.

time delay is introduced on each transmitter-destination path.
τ1, τ2, . . . , τM denote respectively the delays from the trans-
mitters T1, T2, . . . , TM to the destination D. We consider, for
instance, the first transmitter T1 as the node reference and we
denote by ∆i(i = 2, . . . , M) the relative delay between the
transmitter Ti and T1: ∆i = τi − τ1.
The fractional delays are assumed to be absorbed in multipath
(cf. [5]), so the delays τi are integer factors of the symbol
period. The delays are unknown at the transmitters, but are
known at the destination. The system model is equivalent to a
distributed MIMO system with M transmit antennas (one per
transmitter) and N receive antennas.

The transmission is modeled as follows. The destination D
receive the signal: y = HX + n , where X is the modulated
M×T space-time codeword matrix transmitted over T symbol
intervals and n is the Additive White Gaussian Noise (AWGN)
at the destination with variance N0. The channel is assumed to
be quasi-static, so the channel transfer matrix H is constant
over a frame interval but is independent from one frame to
another. We denote by hi,j the channel gain between the ith
transmitter Ti and the jth antenna of D with i = 1, . . . , M
and j = 1, . . . , N .

This system model represents a general cooperative network
model with the transmitters being relay nodes or base stations
or mobiles able to relay etc...

In what follows, (.)∗, (.)t and (.)H denote respectively the
conjugate, transpose and conjugate transpose operations.

III. DELAY TOLERANCE OF OPTIMAL STBC

We discuss first some examples of optimal synchronous
STBC to introduce the “delay tolerance” notion and we remind
after some solutions proposed to design delay tolerant codes.

A. Optimal STBC Are Not Delay Tolerant

The Golden code is an optimal STBC for two transmit and
two receive antennas MIMO systems [9]. Its code matrix is:

G =
1√
5

[
α(x1 + θx2) α(x3 + θx4)

ı ᾱ (x3 + θ̄x4) ᾱ (x1 + θ̄x2)

]
,

where ı =
√
−1, θ = 1+

√
5

2 , α = 1 + ı(1− θ), θ̄ = 1− θ, and
ᾱ = 1 + ı θ. However, it is not delay tolerant as can be seen
by shifting the second row one column and then setting the
entries x1 and x2 to zero. Similarly, the more general class of
space-time codes derived from cyclic division algebras (CDA)
of which the Golden code is a special case is not delay tolerant
either [5].

In [11], the Diagonal Algebraic SpaceTime (DAST) codes
were developed for M ×1 MIMO systems based on algebraic
number fields. The codewords of the DAST occupy exactly
one thread. Subsequently, the authors of [7] showed that, in
a M × N MIMO system, M independent DAST codes (or
other constituent codes) could be transmitted simultaneously
on different threads with full spatial diversity guaranteed on
each thread by tweaking the constituent codes to lie in different
algebraic subspaces. The authors named these designs TAST
codes and proved that they provide excellent performance and
flexibility with respect to signaling constellation, transmission
rate, number of transmit and receive antennas, and decoder
complexity. Unfortunately, the TAST codes and other related
codes available in the literature are not suited for asynchronous
cooperative communications, since they are not delay tolerant
which is clearly illustrated in [5].

B. Existing Solutions for Delay Tolerant STBC

The CDA and TAST codes are not delay tolerant because
they are based on threads of minimal delay (T = M) and
hence contain diagonal matrices that are not delay tolerant.
In [5], the authors extended the class of the TAST codes to
the case of delay tolerant codes for cooperative diversity. Their
proposed codes are based on delay tolerant threaded structures
of length growing exponentially with the number of relays.
The different threads are separated by different algebraic or
transcendental numbers which guarantee a nonzero determi-
nant for the difference of every two distinct code words.
The idea is to repeat the symbols in a way that, even when
the transmitters are asynchronous, the versions of the same
symbols sent by the M transmitters arrive at the destination
in at least M different symbol periods and thus conserve a
full transmit diversity order M . Although these codes provide
full-diversity gain for any delay profile, they are not minimum
delay length because of symbols repetition and are no longer
delay tolerant if one deletes one column of the code word
matrix.
This solution was applied to a variant of the Golden code by
repeating the second column of the code. For instance, the
delay tolerant version of the Golden code, that will be called
hereafter the Asynchronous Golden (AG), is:

Cd =
1√

2(1 + r2)

[
x1 + ırx4 rx2 + x3 rx2 + x3

x2 − rx3 ırx1 + x4 ırx1 + x4

]
,

(1)
where r = θ − 1.
Although this new version of the Golden code is delay tolerant
since it achieves the maximum diversity for any shifted version
of the code matrix, the AG suffers from a rate loss due to the
repetition.

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.



Another solution was given in [12] and [10]. The idea in
these papers is to combine differently, all the symbols to send,
for each antenna and each transmission; this way, even in the
presence of a delay, it is sure that each symbol has at least
one version that is not arriving at the same time with the other
versions of the same symbol sent by the other transmitters to
the destination. It was proven that these codes conserve a full
rank code matrices in the asynchronous case and yet have a
full diversity. A code example that satisfies these design rules
is the 2× 2 full-rate full-diversity space-time code mentioned
in [10]:

D =

[
ax1 + bx2 − cx3 − dx4 −cx1 − dx2 − ax3 − bx4

bx1 + ax2 + dx3 − cx4 −dx1 + cx2 − bx3 + ax4

]
,

(2)
where a = 1√

(5+
√

5)(2+
√

2)
; b = 1√

(5−
√

5)(2+
√

2)
;

c = 1√
(5+

√
5)(2−

√
2)

; d = 1√
(5−

√
5)(2−

√
2)

.

Suppose that the second row of the matrix D is shifted one
column to the right due to a delay by the second transmitter of
one symbol period. In this case, we still have two versions of
the four symbols arriving to the destination in different time
periods. This code will be called the Damen Code (DC).
The problem in combining all the symbols to send is the
increasing complexity at the receiver when the number of
transmitters becomes bigger (M > 2). For instance, for
3 × 3 codes in [12], each symbol sent by a transmitter is the
combination of nine information symbols.

IV. GENERAL CONSTRUCTION METHOD

In this section, we present a novel design to construct
bounded delay tolerant STBC from known non-delay tolerant
STBC. This solution is based on the concatenation of L code
matrices and the permutation of the new matrix columns in a
suitable manner to have a new order of the columns. The new
designed code ensures a full-diversity for a set of delay profiles
that can occur in the network without a rate reduction because
no repetition is needed. By applying this method on optimal
synchronous codes (i.e. Golden code, TAST), we ensure the
optimality of the new codes in the synchronous case and also
their high performance in the asynchronous case.

Let us consider a M ×T code having the following matrix:

Xℓ =

⎡

⎢⎣

Xℓ
11 . . . Xℓ

1T
...

. . .
...

Xℓ
M1 . . . Xℓ

MT

⎤

⎥⎦ .

By concatenating L ≥ 2 different matrices Xℓ (ℓ = 1, . . . , L),
the new code matrix becomes:

Xc =

⎡

⎢⎢⎢⎢⎣

X1
11 . . . X1

1T . . . XL
11 . . . XL

1T
...

. . .
... · · ·

...
. . .

...

X1
M1 . . . X1

MT︸ ︷︷ ︸
X1

. . . XL
M1 . . . XL

MT︸ ︷︷ ︸
XL

⎤

⎥⎥⎥⎥⎦
.

After, we reorder the columns of Xc in the following way:
• First, we place in order the first column of the L code

matrices from X1 to XL.
• Then, we class the remaining columns from the second

to the T th column using the same order as previously.
This operation can be simply done by permutating the columns
of matrix Xc. The permutated matrix will have the following
form:

Xpc =

⎡

⎢⎣

X1
11 . . . XL

11 . . . X1
1T . . . XL

1T
... · · ·

... · · ·
... · · ·

...

X1
M1 . . . XL

M1 . . . X1
MT . . . XL

MT

⎤

⎥⎦ .

Using these operations, we can ensure (as shown in the
next sections) a full transmit diversity of M for a set of
delay profiles depending on the number of concatenated code
matrices L. The idea behind putting several coded symbols
together and permutating the code columns is to eventually
prevent the versions of the same symbols from arriving to the
destination at the same time in the case when a delay occurs
in the network.
By increasing L, we extend the number of tolerated delay pro-
files by the new codes called Bounded Delay Tolerant STBC.
Therefore, we can choose the number of the concatenated
codes L to cover the existing delay profiles in the network.

Besides, this construction method has many advantages.
First, it does not use symbol repetition and thus it does
not decrease the code rate. Moreover, the concatenation of
code matrices reduces the number of guard intervals needed
between every two consecutive code words to ensure that the
constructed space-time code is received without any interfer-
ence from either the next or the previous code words. Conse-
quently, the proposed design method improves the overall rate
of the system.
Furthermore, when the communication is synchronous, simple
permutations converse to the ones applied at the transmission
can be done at the receiver; hence, each initial code matrix
can be decoded separately by using the known quasi-optimal
decoding algorithms for these STBC (i.e., sphere decoder
[13]).

V. CONSTRUCTION EXAMPLE FOR M = 2
In the case of two transmitters, we apply the new construc-

tion method on the optimal Golden code. For clarity reasons,
the Golden code matrix is written in the following way:

Gℓ =
[
Xℓ

1 Xℓ
2

Xℓ
3 Xℓ

4

]
,

where Xℓ
1 = 1√

5
α(x1 + θx2); Xℓ

2 = 1√
5

α(x3 + θx4);

Xℓ
3 = 1√

5
ı ᾱ (x3 + θ̄x4); Xℓ

4 = 1√
5

ᾱ (x1 + θ̄x2).

A. Code Structure

By concatenating L Golden code matrices Gℓ, we obtain:

Gc =

⎡

⎢⎣
X1

1 X1
2 X2

1 X2
2 . . . XL

1 XL
2

X1
3 X1

4︸ ︷︷ ︸
G1

X2
3 X2

4︸ ︷︷ ︸
G2

. . . XL
3 XL

4︸ ︷︷ ︸
GL

⎤

⎥⎦ .
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After permutating the columns of Gc, the resulting matrix of
the new code is:

Gpc =
[
X1

1 X2
1 . . . XL

1 X1
2 X2

2 . . . XL
2

X1
3 X2

3 . . . XL
3 X1

4 X2
4 . . . XL

4

]
.

A full transmit diversity of two is ensured for an interval
of relative delays ∆2 = τ2 − τ1:

∆2 ∈ {−∆max,+∆max},
with ∆max = L−1. This interval will be called the “interval of
tolerance”. The bounds of this interval are deduced from the
fact that the same coded symbols (i.e. X1

2 and X1
3 ) will not

arrive at the same time at the destination unless the first row
is shifted L columns to the left or the second row is shifted
L columns to the right.

B. Rank and Determinant Criteria

Let X be the transmitted codeword, and T be the erro-
neously decoded codeword at the destination.

Proposition 1: The determinant det
(
(X − T).(X − T)H

)

is non-zero for all the values of relative delays ∆2 in the
interval of tolerance. Thus, the code matrix has full rank for
these values of ∆2.
The proof of Proposition 1 is given in Appendix A.

Proposition 2: The pairwise error probability P(X → T)
of the new delay tolerant code for ∆2 in the interval of
tolerance can be upper bounded by:

P(X → T) ≤
(

2∏

i=1

λi

)−N (
1

8N0

)−2N

. (3)

The proof of Proposition 2 is drawn in Appendix B.
In Equation (3), the term 1

8N0
represents the Signal to Noise

Ratio (SNR) of the network. The diversity order d can be
deduced from the PEP as the exponent of the SNR [1]; thus,
it is equal to 2.N for any relative delay ∆2 in the interval of
tolerance.

C. Numerical Results

Here, we compare the performance of the new bounded
delay tolerant code that will be referred to as the Permutation
Code (PC) with the Asynchronous Golden (AG) (1) and
the Damen Code (DC) (2) for two receive antennas at the
destination (N = 2). The PC with L = 3 concatenated
Golden code matrices is considered. To have the same spectral
efficiency, PC and DC send 4-QAM constellation symbols xi,
and AG sends symbols xi that belong to 8-PSK constellation.

In Figures 2 and 3, we plot the Frame Error Rate (FER) and
the Bit Error Rate (BER) for PC, AG and DC for ∆2 = 0, 1 .
For the detection, the exhaustive Maximum Likelihood (ML)
is used. From the simulation results, we can notice that the PC
designed in this paper outperforms the AG and the DC when
the two transmitters are synchronized or not. This is mainly
due to the avoidance of symbol repetition used by the AG and
because the PC is based on the optimal Golden code which
has higher minimal determinant and thus leads to better error
rate performances than the DC.
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Fig. 2. Error rates comparison between PC and AG.
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Fig. 3. Error rates comparison between PC and DC.

VI. CONSTRUCTION EXAMPLE FOR M > 2
For a number of transmitter M bigger than two, an optimal

TAST code can be used as the base code. An example of the
new design method for three transmitters is given hereafter.
The TAST matrix for M = T = 3 and N ≥ 3 receive antennas
is [7]:

Sℓ =

⎡

⎢⎢⎣

sℓ
11 φ

2
3
ℓ sℓ

32 φ
1
3
ℓ sℓ

23

φ
1
3
ℓ sℓ

21 sℓ
12 φ

2
3
ℓ sℓ

33

φ
2
3
ℓ sℓ

31 φ
1
3
ℓ sℓ

22 sℓ
13

⎤

⎥⎥⎦ ,

where (sℓ
j1, s

ℓ
j2, s

ℓ
j3)t = M(xj1, xj2, xj3)t, j = 1, 2, 3.

M being an optimal 3 × 3 algebraic rotation matrix
and x11, . . . , x33 are the information symbols belonging to
the constellation used. φ1, . . . , φL are appropriate algebraic
or transcendental numbers chosen such that the numbers
{1,φ

1
3
1 ,φ

2
3
1 , . . . , φ

1
3
L,φ

2
3
L} are algebraically independent over

the algebraic number field Q(θ) that contains the elements
of the rotation matrix M [7].
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TABLE I
TOLERABLE RELATIVE DELAY PROFILES FOR M = T = 3

∆i ∆j

0 {-2, -1, 0, 1, 2}
1 {-1, 0, 1, 2}
-1 {-2, -1, 0 ,1}
2 {0, 1, 2}
-2 {-2, -1, 0}

(∆2, ∆3) = (−1,−3); (−2,−4); (3, 1); (4, 2)

Let us apply the construction method described in Section
IV on L = 3 TAST codes S1, S2 and S3. The built code will
have the following matrix:

Spc =

⎡

⎢⎢⎢⎣

s1
11 s2

11 s3
11 φ

2
3
1 s1

32 . . . φ
1
3
3 s3

23

φ
1
3
1 s1

21 φ
1
3
2 s2

21 φ
1
3
3 s3

21 s1
12 . . . φ

2
3
3 s3

33

φ
2
3
1 s1

31 φ
2
3
2 s2

31 φ
2
3
3 s3

31 φ
1
3
1 s1

22 . . . s3
13

⎤

⎥⎥⎥⎦
.

The full diversity of 3.N is guaranteed for the synchronous
case and for a set of relative delay profiles (∆2, ∆3) that
depend on each other. Table I provides the different relative
delay profiles for which the new code ensures the full diversity:
∆i corresponds to one of the two relative delays (∆2 or ∆3)
and ∆j to the other one.
The conservation of the full diversity for these set of delay
profiles will be possible because the threaded structure (no
spatial or temporal interference within a thread) is kept due
to the algebraically independent numbers used to separate the
threads within a TAST code matrix and with the threads of
the other TAST matrices.

VII. CONCLUSIONS

In this paper, a new general design method to construct
delay tolerant codes is proposed for M distributed transmit
antennas and N receive antennas. We showed that the new
codes ensures a full diversity for a set of delay profiles
including the synchronous case. For M = 2, the new code
based on the Golden code verifies the rank and determinant
criteria for an interval of relative delays between the two
transmitters centered on zero. It also gives better error rate
performances than other proposed delay tolerant solutions
and codes for synchronous and asynchronous communications.
Besides, example based on the TAST codes for M > 2 was
given with the delay profiles offering a full diversity order.

APPENDIX A

Without loss of generality, some assumptions are taken to
make the presentation of the derivations below clearer:

• We consider that τ2 ≥ τ1 and hence the relative delay ∆2

between the two transmitters is positive: ∆2 = τ2−τ1≥0.
• The destination is considered to be synchronous with

transmitter T1 so that τ1 = 0.

At the destination, the received signal y can be written as:

y = H X + n,

where

y =

⎡

⎢⎣
y1,1 y2,1 . . . y(2L+∆2),1

...
...

. . .
...

y1,N y2,N . . . y(2L+∆2),N

⎤

⎥⎦ ;

H =

⎡

⎢⎣
h1,1 h2,1

...
...

h1,N h2,N

⎤

⎥⎦;

X =
[

X1
1 X2

1 . . . XL
2 0∆2

0∆2 X1
3 X2

3 . . . XL
4

]
;

n =

⎡

⎢⎣
n1,1 n2,1 . . . n(2L+∆2),1

...
...

. . .
...

n1,N n2,N . . . n(2L+∆2),N

⎤

⎥⎦ .

0∆2 denotes an all-zero vector of length ∆2.

Let T be the erroneously decoded codeword at the receiver;
thus

X − T =
[

e1
1 e2

1 . . . eL
2 0∆2

0∆2 e1
3 e2

3 . . . eL
4

]
is the codeword dif-

ference matrix, with eℓ
i = Xℓ

i − T ℓ
i ;
(
i = 1, . . . , 4

)
and(

ℓ = 1, . . . , L
)
.

Matrix A will be defined as: A = (X − T).(X − T)H .
Hereafter, we prove that det(A) is different from zero for
different values of ∆2 in the interval of tolerance.

1) Synchronous Case (∆2 = 0): By making converse
permutations to those done to the columns of the code matrix
Gpc, we obtain the matrix Gc which is the concatenation
of L Golden code matrices Gℓ. It was proven in [9] that
det(Gℓ) ̸= 0. Since GℓGℓH

are positive definite matrices,
we use the determinant inequality in [14]:

det
(
GcGc

H
)

= det

(
L∑

ℓ=1

(
GℓGℓH

))

≥ min
Gc ̸=02×2L

L∑

ℓ=1

det
(
GℓGℓH

)
. (4)

By considering the codeword difference matrices, it is easy to
deduce from (4) the following:

det
(
A
)
≥ min

L∑

ℓ=1

det
(
BℓBℓH

)
; with Bℓ =

[
eℓ
1 eℓ

2

eℓ
3 eℓ

4

]
,

and det
(
BℓBℓH) ≥ 0. [9]

Because X and T are two different codewords,
det
(
BℓBℓH) ̸= 0 is verified for at least one value of

ℓ, and det
(
A
)

= det
(
(X − T).(X − T)H

)
cannot be equal

to zero.
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2) Asynchronous Case (∆2 ̸= 0): In the presence of a
delay, the code matrix cannot be written as a concatenation
of 2 × 2 Golden code matrices as for the synchronous case.
Thus, we derive the determinant of matrix A for the non-zero
relative delays in the interval of tolerance (0 < ∆2 < L) with
the assumptions considered here in the proof).

We have: A =
[
a11 a12

a21 a22

]
, where:

• a11 =
2∑

i=1

( L∑
ℓ=1

|eℓ
i |2
)

;

• a12 =
L−∆2∑
ℓ=1

(eℓ+∆2
1 )(eℓ

3)∗ +
∆2∑
ℓ=1

(eℓ
2)(e

L−∆2+ℓ
3 )∗

+
L∑

∆2+1
(eℓ

2)(e
ℓ−∆2
4 )∗ ;

• a21 = a∗
12 ;

• a22 =
4∑

i=3

( L∑
ℓ=1

|eℓ
i |2
)

.

By manipulating the terms of det(A) conveniently, the deter-
minant can be written as the sum of two groups of terms:

• The first group terms are products of squared modulus:
|eℓ

i |2 |eℓ′

i′ |2 with i = {1, 2}, i′ = {3, 4}, ℓ and ℓ′ belong
to {1, . . . , L}.

• The terms in the second group have the following form:

|m|2 + |n|2 − 2 R
(
m∗. n

)
.

R
(
x
)

being the real part of the complex number x.
m and n are products of eℓ

i and eℓ′

i′ .

The terms in the two groups above are positive and so det(A)
is a sum of positive terms that cannot be all null at the same
time for two different codewords X and T.

APPENDIX B

Assuming a Maximum Likelihood (ML) detection, the pair-
wise error probability P(X → T) can be upper bounded by
the exponential bound [1]:

P(X → T) ≤ exp

(
−

EH

(
∥H.(X − T)∥2

)

8N0

)
, (5)

where EH is the expectation over H.

∥H.(X − T)∥2 = H.(X − T).(X − T)H .HH = H.A.HH .

A being a Hermitian matrix, we can find a unitary matrix V
and a positive real diagonal matrix D with A = VHDV:

D =
[
λ1 0
0 λ2

]
, V =

[
v11 v12

v21 v22

]
;

where λ1 and λ2 are the eigenvalues of matrix A. We shall
note that λ1 and λ2 are different from zero for relative delays
in the interval of tolerance because det(A) is not null for these
values of ∆2 as seen in Appendix A.

Therefore, we have:

EH

(
∥H.(X − T)∥2

)
= EH

(
H.VH .D.V.HH

)
=

EH

( 2∑

i=1

N∑

j=1

λi |βji|2
)

=
2∑

i=1

N∑

j=1

λi EH

(
|βji|2

)
,

(6)

where βji = hj .vi; hj being the jth row of H and vi the
ith column of V. Because the terms of vi form a base in
C2 and the hi,j are Gaussian variables with zero mean and
a variance of 0.5 for the real dimension; thus, βji are also
Gaussian variables with zero mean and a variance of 0.5 for
the real dimension and EH

(
|βji|2

)
= 1.

Substituting (6) into (5), we obtain:

P(X → T) ≤
N∏

j=1

exp

(
− 1

8N0

2∑

i=1

λi

)

≤

⎛

⎜⎜⎝
1

2∏
i=1

(
1 + λi

8N0

)

⎞

⎟⎟⎠

N

≤
(

2∏

i=1

λi

)−N (
1

8N0

)−2N

.

REFERENCES

[1] V. Tarokh, N. Seshadri, and A.R. Calderbank, “Space-Time Codes for
High Data Rate Wireless Communication: Performance Criterion and
Code Construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744–765,
March 1998.

[2] A. R. Hammons, “Algebraic Space-Time Codes for Quasi-Synchronous
Cooperative Diversity,” in Proc. IEEE Int. Conf. Wireless Networks,
Communications and Mobile Computing (WirelessCom 2005), Maui, HI,
pp. 11–15, Jun. 2005.

[3] H. F. Lu and P. V. Kumar, “Unified Construction of Space-Time Codes
with Optimal Rate-Diversity Tradeoff,” IEEE Trans. Inform. Theory,
vol. 51, Issue 5, pp. 1709–1730, May 2005.

[4] A. R. Hammons and H. El Gamal, “On the Theory of Space-Time
Codes for PSK Modulation,” IEEE Trans. Inform. Theory, vol. 46, pp.
524–542, Mar. 2000.

[5] M.O. Damen and A.R. Hammons, “Delay-Tolerant Distributed TAST
Codes for Cooperative Diversity,” IEEE Trans. Inform. Theory, special
issue on cooperative diversity, vol. 53, pp. 3755–3773, Oct. 2007.

[6] A. R. Hammons and R. E. Conklin, “Space-Time Block Codes for
Quasi-Synchronous Cooperative Diversity,” in Proc. Military Commu-
nications Conf. (MILCOM), Washington, DC, pp. 1–7, Oct. 2006.

[7] H. El Gamal and M.O. Damen, “Universal Space-Time Coding,” IEEE
Trans. Inform. Theory, vol. 49, Issue 5, pp. 1097–1119, May 2003.

[8] S. Alamouti, “Space-Time Block Coding: A Simple Transmitter Diver-
sity Technique for Wireless Communications,” IEEE Journal On Select
Areas In Communications, vol. 16, no. 8, pp. 1451–1458, October 1998.

[9] F. Oggier, G. Rekaya, J-C. Belfiore, and E. Viterbo, “Perfect Space-
Time Codes,” IEEE Transactions on Information Theory, vol. 52, no.
9, pp. 3885–3902, Sept. 2006.

[10] M. Sarkiss, M.O. Damen, and J.-C. Belfiore, “2x2 Delay-Tolerant
Distributed Space-Time Codes with Non-Vanishing Determinants,” Pro-
ceedings IEEE Personal, Indoor and Mobile Radio Communications,
PIMRC 2008, Sept. 2008.

[11] M. O. Damen, K. Abed-Meraim, and J.-C. Belfiore, “Diagonal Algebraic
Space-Time Block Codes,” IEEE Transactions on Information Theory,
vol. 48, no. 3, pp. 628–636, Mar. 2002.

[12] M. Torbatian and M.O. Damen, “On the Design of Delay-Tolerant
Distributed Space-Time Codes with Minimum Length,” IEEE Trans. on
Wireless Communications, vol. 8, no. 2, pp. 931–939, Feb. 2009.

[13] M.O. Damen, H. El Gamal, and G. Caire, “On Maximum-Likelihood
Detection and the Search for the Closest Lattice Point,” IEEE Trans.
Inform. Theory, vol. 49, no. 10, pp. 2389–2402, Oct. 2003.

[14] Yi Hong, Emanuele Viterbo, and Jean-Claude Belfiore, “Golden Space-
Time Trellis Coded Modulation,” Proceedings International Symposium
on Information Theory and its Applications (ISITA 2006), Oct. 2006.

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.


