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Abstract—Polarization effects may induce severe performances
degradation in polarization multiplexed optical fiber transmis-
sions. Those systems can be seen as 2×2 multi-antennas systems
as the emitted polarizations can be considered as 2 input signals
and the received polarizations as 2 output signals. Therefore,
Space-Time code can be used to take benefit of this configuration
and enhance the transmission performances but they have to be
combined with optical OFDM to suppress the fiber dispersion and
allow their decoding. In wireless 2×2 multi-antennas systems, the
Golden and the Silver code are respectively the two best Space-
Time codes so, we propose to use those two codes on polarization
multiplexed systems. The performances of the Space-Time codes
on the optical fiber channel are different than on the wireless
channel. Simulations show than the Silver code outperforms the
Golden code. Nevertheless, we also show that Space-Time coding
can dramatically mitigate the polarization dependent loss (PDL)
impairments.

I. INTRODUCTION

Polarization multiplexed (PolMux) formats have become
very attractive for 40 Gb/s and 100 Gb/s optical transmission
systems. Indeed the spectral efficiency can be doubled emitting
the data simultaneously on two orthogonal polarizations. Pol-
Mux transmissions require efficient digital signal processing
in order to recover the polarizations which have been affected
by the birefringence of the fiber and several transmission im-
pairments. Polarization Mode Dispersion (PMD) introduces a
frequency dependent phase shift to the signal and corresponds
to a major source of degradation at high bit-rates [1]. It can be
mitigated by efficient equalization techniques [2] or advanced
modulation formats such as OFDM [3]. Polarization Depen-
dent Loss (PDL) is another source of impairments introduced
by all the in-line optical elements of the systems (isolator,
amplifier. . . ) which attenuates differently the two polarization
components of the signal. PDL induces polarization dependent
optical power fluctuations resulting in unequal optical signal-
to-noise ratio (OSNR) on the two PolMux signals. Note that
PDL can’t be efficiently mitigated by digital equalization
techniques.

The polarization multiplexed transmissions can be seen
as a 2 × 2 multiple-input multiple-output (MIMO) systems.
Indeed, the signal can be multiplexed on 2 polarizations at
the emission, which corresponds to the multiple inputs, and
received on 2 polarizations, which corresponds to the multiple
outputs. Space-Time codes have been introduced in wireless
communications to exploit all the degrees of freedom of the

MIMO channel. They can be adapted for optical transmissions
and have been referred in the literature [8] as Polarization-
Time codes. However, their decoding requires a linear and not
dispersive channel which is not the case of the optical fiber.
Optical OFDM can manage dispersion impairments consider-
ing the channel in the frequency domain and therefore has to
be combined with the Polarization-Time coding techniques.
The Golden code [10] and the Silver code [11] are, in this
order, the two best codes on 2 × 2 Rayleigh fading channel
and we propose to evaluate the performances of those two
codes on a optical channel affected by PDL. We show that
Polarization-Times coding techniques are not able to manage
dispersion impairments such as PMD but can very efficiently
mitigate the PDL performances degradation. Moreover, unlike
in wireless transmission, the Silver code here performs better
than the Golden code.

After presenting the considered optical fiber channel model
and describing the optical OFDM format, the Polarization-
Time codes will be introduced. We give an overview of the
Polarization-Time coding scheme in the literature and show
that they are sub-optimal. Finally, performance evaluation
through simulation results will be proposed.

II. OPTICAL CHANNEL MODEL

In multi-carrier high bit-rates optical transmissions, the
transmitted signal is affected by many kinds of impairments
in the fiber such as: chromatic dispersion, polarization mode
dispersion, polarization dependent loss and cross phase mod-
ulation (XPM). In this paper, we will focus our attention here,
on the PMD and the PDL which are linear effects and can be
modeled using a transfer matrix approach. The transfer matrix
H(ω) of the fiber is called Jones matrix; it is a 2×2 complex
matrix expressing the relation, between the two orthogonal
components of the electric field in the frequency domain, at
the input and the output of the fiber:

[
Eout

x

Eout
y

]
= H(ω) ·

[
Ein

x

Ein
y

]
(1)

A. Polarization mode dispersion

Polarization mode dispersion introduces differential group
delay (DGD) between the two orthogonal principal states of
polarization (PSP). Indeed, due to local constraints in the fiber,
the two components of the electrical field do not travel at
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the same velocity. As the local birefringence is a stochastic
process, the DGD varies in time. In the first order PMD
approximation, DGD can be considered constant over the
spectrum, however, with the increase of the bit-rates, this
approximation does not stand anymore and the DGD has to be
considered wavelength dependent. The PMD is often modeled
by a transfer matrix being a concatenation of random rotation
matrix and wavelength dependent birefringent matrices [5]:

HPMD(ω) =
N∏

m=1

RmDGDm (2)

DGDm =
[

exp
(
iω
2 dgd(ω)

)
0

0 exp
(
−iω

2 dgd(ω)
)

]

The rotation matrices Rm depend on two random angles θm

and ϕm describing the local orientation mismatch between the
PSP of the fiber and the polarizations of the signal, dgd is the
DGD of the section.

B. Polarization dependent loss

Optical transmission systems have become very complex
and include a large number of inline optical components hav-
ing significant PDL such as isolators, couplers or amplifiers. In
PolMux systems, PDL induces a fluctuation of the polarization
components power level during the transmission changing the
OSNR and leading to BER degradation at the receiver. The
optical elements having PDL in the system can be considered
as elements attenuating the signal more along one of the
PSP than the other one. The attenuation of each polarization
depends on their orientations compare to the axes of the optical
element. We consider the model used in [6] to emulate the
PDL:

HPDL = Rα

[ √
1 − γ 0
0

√
1 + γ

]
Rβ (3)

Rα and Rβ are random rotation matrices representing the
orientation mismatch between the polarization states and the
axes of the optical component having PDL. The PDL is defined
by:

ΓdB = 10 log10
1 − γ

1 + γ
(4)

Fig. 1. Principle of PDL when the axes of the optical element are parallel
to the polarizations of the input signal

III. OPTICAL OFDM

OFDM has been recently investigated in optical trans-
mission systems because of its high potential of dispersion
mitigation. Direct detection and coherent OFDM have been
introduced showing excellent behavior against chromatic dis-
persion and PMD [3][4].

A. OFDM Channel model

The principle of OFDM format is to multiplex the informa-
tion over multiple orthogonal subcarriers independently mod-
ulated. The modulation is realized in the frequency domain
and converted in the time domain by an inverse FFT. The
advantage is that the channel is not dispersive in the frequency
domain and it can highly simplify the equalization. Indeed, due
to the impairments of the fiber such as chromatic dispersion or
PMD, there might be Inter-Symbol Interferences (ISI). In order
to recover the not dispersive channel, ISI has to be removed.
The solution offered by the OFDM format is to add a cyclic
prefix at the beginning of each OFDM symbol. Thanks to this
cyclic structure, the ISI will be transformed, once converted
back in the frequency domain, into a scalar multiplication.
A detailed scheme of an optical OFDM transmission can be
found in [3]. In the following, we will assume an OFDM
transmission in which the cyclic prefix is well dimensioned
to ensure a not dispersive channel. The received modulated
symbols can be expressed as:

Yk = HkXk + Nk (5)

where Hk is the transfer matrix of the channel for the kth

subcarrier and Xk ,Yk ,Nk are respectively the transmitted
symbols, the received symbols and the noise on the kth subcar-
rier. As described in [4], optical OFDM can support PolMux
formats and this can be seen as a MIMO not dispersive linear
channel where the polarizations have the role of the antennas
in wireless communication.

B. Capacity of the OFDM channel

The capacity of an nt × nr MIMO channel (using nt

antennas or polarization, at the emission and nr antennas or
polarization, at the reception) is equal to [14]:

Ck = EH

{
log2

(
det

[
I +

ρ

nt
HkH

†
k

])}
(6)

After a singular value decomposition of the matrix Hk , it
leads to:

Ck =
min(nt,nr)∑

i=1

EH

{
log2

(
1 +

ρ

nt
λ2

i

)}
(7)

where ρ is the signal to noise ratio per symbol on the sub-
carrier and the λi are its singular values of Hk. A MIMO
channel can be seen as min (nt,nr) parallel AWGN channels
having their own capacity. The OFDM is a multi-carrier
format and the total capacity of the transmission is the sum
of the capacity of all sub-carriers. From now on, the index
corresponding to the subcarriers will be dropped for simplicity.

C. Decoding linear channel

For each subcarrier we have the channel model of Eq.1. The
transfer matrix can be estimated and will be supposed known
at the receiver. The optimal way to recover the information is
to realize a maximum likelihood (ML) decoding. The principle
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is to find the estimated symbol vector minimizing the quadratic
distance with the received vector:

X̂ = arg min
X

∥Y − HX∥2 (8)

The ML decoding can be performed for example, by an
exhaustive research over all the constellation points. In op-
tical transmission systems, BPSK and QPSK modulation are
commonly used and doing a ML decoding by an exhaustive
research on such small size formats is possible and the induced
complexity is reasonable.

IV. POLARIZATION-TIME CODING

A. Space-Time codes in optical transmission systems

In optical systems the MIMO channel is brought by
the polarization thus, the Space-Time codes are referred as
Polarization-Time codes. The optical systems can use up
to two polarizations at the emission (nt ≤ 2 ) and two
polarizations at the reception (nr ≤ 2 ).We will consider the
case where both polarizations are used at the transmitter and at
the receiver thus, we have a 2×2 MIMO channel. The Space-
Time decoding can only be performed under the assumption
of not dispersive channel and H constant during the codeword
time duration. In optical transmission the channel is changing
slowly in comparison to the bit-time and so can be considered
constant. Optical OFDM ensures a not dispersive model of the
channel in the frequency domain.

Fig. 2. Scheme of a 2x2 OFDM transmission with Polarization-Time coding

Systems combining OFDM format and Polarization-Time
coding have already been proposed in the literature. In [4], a
good description of all the PolMux OFDM configurations is
given. For the 2×1 and the 2×2 configurations, a polarization
diversity transmitter with a symbol rate of 0.5 symbol/cu
(symbol per channel use) has been presented. Therefore,
this scheme introduces an important redundancy, as a 2 × 2
MIMO systems can have a maximum rate of 2 symbol/cu. In
[9], Alamouti code has been proposed for a 2 × 2 PolMux
OFDM system, as described on Fig.2. A method combining
PT decoding and carrier recovery is also presented. However,
Alamouti code has a rate of 1 symbol/cu corresponding to a
50% redundancy. Moreover, neither coding gain nor diversity
recovery was observed. The authors have only considered
PMD with a transfer matrix of the fiber having the form of
Eq.2. Although PMD can be a very limiting impairment for
transmission, it does not reduce the capacity of the channel.
Using Eq.6 and noticing that the transfer matrix of the fiber
is always unitary (both singular values are equal to 1), the
capacity of the 2 × 2 MIMO channel with only PMD can be
expressed as:

C = 2 log2
ρ

2
(9)

This is capacity correspond to two parallel AWGN channels.
PMD can be considered as information mixing between the
two channels but there is no loss of information. Therefore,
Polarization-Time coding doesn’t bring any gain.

B. The Golden code and the Silver code

The principle of Space-Time codes, here used as
Polarization-Time codes, is to send a combination of different
modulated symbols on each polarization during several symbol
times (i.e channel use). On a 2×2 MIMO channel, to achieve
full rate and full diversity, 4 modulated symbols have to be
emitted during 2 symbol times. Many Space-Time codes have
been designed for 2× 2 channels but we will focus especially
on the Golden and the Silver codes which are the two best
codes for this configuration.

1) The Golden code: The Golden Code [10] has the best
performances on 2× 2 MIMO Rayleigh fading channels. The
encoded symbols are sent on two polarizations (pola1 ,pola2)
during two symbol times (T1 ,T2). The codeword matrix of
the Golden code is:

X =
[

Xpola1,T1 Xpola1,T2

Xpola2,T1 Xpola2,T2

]

X =
1√
5

[
α (S1 + θS2) α (S3 + θS4)
iα

(
S3 + θS4

)
α

(
S1 + θS2

)
]

(10)

where θ = 1+
√

5
2 , θ = 1−

√
5

2 , α = 1 + i + iθ, α = 1 +
i + iθ and S1, S2, S3, S4 are four modulated symbols. The
codeword matrix of the Golden code has a full rank of 2 which
ensures the maximum diversity. It achieves a full rate of 2
symbols/cu because 4 symbols are transmitted during 2 symbol
times. Moreover, the determinant (corresponding to the coding
gain on Rayleigh fading channel) is proportional to 1

5 which
is the highest value obtained for a 2 × 2 Space-Time code.

2) The Silver code: Silver code [11] has performances very
close to the Golden code but has also the advantage of having
a reduced decoding complexity due to its particular structure.
The codeword matrix of the Silver code is:

X =
[

S1 + Z3 −S∗
2 − Z∗

4

S2 − Z4 S∗
1 − Z∗

3

]

[
Z3

Z4

]
=

1√
7

[
1 + i −1 + 2i
1 + 2i 1 − i

] [
S3

S4

]
(11)

where S1, S2, S3, S4 are four modulated symbols. The
determinant of this code is proportional to 1

7 .

C. Design criterion

The optical channel model is not a Rayleigh channel as
in wireless transmission. Therefore, the performances of the
Space-Time codes might not be based on the same criteria. In
order to understand the performances of the different Space-
Time codes, it is important to point out a criterion on which
their performances are based. We use the upperbound of the
paire wise error probability defined in [13]:

Pe ≤
∑

X1∈C

∑

X2∈C
X1 ̸=X2

exp

⎛

⎝−
EH

[
∥H (X1 − X2)∥2

]

8σ2

⎞

⎠ (12)
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where ∥X∥ =
√

trace (XX†) and σ2 is the noise standard
deviation. The norm ∥H (X1 − X2)∥ represents the Euclid-
ian distance between two codewords when modified by the
transfer matrix H.

The minimum distance dmin of a Space-Time code is the
minimum Euclidian distance between two different codewords.
However the matrix H modifies the codeword constellation
and reduces the minimum distance between the codewords
which increase the error probability. The minimum distance
becomes:

dmin = min
X1,X2

(∥H (X1 − X2)∥) (13)

The Space-Time code having the best performances under
the optical channel is the one having the highest minimum
distance dmin. For every PDL values, the transfer matrix H
of Eq.3 is function of the random angles α and β thus the
minimum distance of the code is only function of β because
Rα is a rotation matrix which does not change dmin. Fig.3
shows the minimum distance of the Silver and the Golden
codes for different angle β. The the Sezginer-Sari [12] code
is also introduced and compared with the two previous codes.
Its construction is very similar to the Silver code but its
performances are smaller on the wireless channel.

Fig. 3. Minimum distance of Space-Time codes depending on the rotation
angle β of the transfer matrix for a QPSK constellation

dmin shows a π
2 periodicity. As the rotation matrix angle is

uniformly distributed over [0, 2π], we can deduce the average
minimum distance EH [dmin] of each code on the optical
channel by averaging dmin on

[
0, π

2

]
(see Fig.4).

We can notice that the Silver code has the highest minimum
distance and thus, is outperforming the Golden code and the
Sezginer-Sari code in this configuration. The criterion of the
determinant valid for a Rayleigh channel is no more standing
here. Indeed although Silver code has a smaller minimum
determinant than the Golden code, it is having a higher
minimum distance. With the considered PDL values, Silver
code minimum distance is slightly degraded. For higher values
of PDL, the minimum distance of the Silver code is decreasing

Fig. 4. Average minimum distance of Space-Time codes function of PDL
for a QPSK constellation

too, however such PDL values are too high to be considered
in real transmissions.

V. SIMULATION AND RESULTS

We consider an OFDM system leading to the channel model
of Eq.5. The transfer matrix is modeled by Eq.3 and the
modulated symbols belong to a QPSK constellation. In optical
transmission systems, the FEC requirement is to provide an
output BER < 10−12 for an input BER > 10−3 therefore,
the SNR penalties at BER = 10−3 are computed for different
PDL values on Fig.5.

Fig. 5. SNR penalties introduced by PDL at BER = 10−3 with and without
Space-Time coding for deterministic PDL

We can clearly see the important penalty reduction brought
by Space-Time coding. When there is no PDL, those
Polarization-Time codes do not introduce any penalties as they
are by construction redundancy free. Therefore, the use of a
Polarization-Time code is always profitable. The simulation
result are in agreement with the previous section analysis,
indeed the Silver code performs better than the Golden code. In
this model, although the angles between the PDL elements and
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Fig. 6. Performances of the Golden and the Silver code when PDL is
considered Gaussian

the polarization states are chosen random, the PDL values have
been considered deterministic. It means that the two equivalent
channels fading λ1 and λ2 are always equal. However it has
been shown that PDL is a stochastic process following a
particular distribution. In [7], the PDL has been measured and
follows a Gaussian distribution. Therefore, we now consider
a PDL model in which Γ is the standard deviation of a zero
mean Gaussian distribution. We measure on Fig.6 the BER
of the transmission with a PDL = 3dB with and without
Polarization-Time coding. We notice that when the PDL is
no more deterministic, the diversity is lost. Using a PT code
will have the double advantage of bringing a coding gain
and recovering the full diversity. The Silver code have almost
the same performances as the case without PDL, moreover it
keeps outperforming the Golden code in the case of fluctuating
values of PDL (see Fig.7).

VI. CONCLUSION

We have introduced the Golden code and the Silver code
as Polarization-Time codes in order to mitigate the PDL
impairments in coherent optical 2×2 polarization multiplexed
OFDM systems. Those codes both offer no redundancy, with
a full rate of 2 symbol/cu. Polarization-Time coding is useless
against PMD but can very efficiently mitigate the PDL im-
pairments. Indeed, important coding gains have been observed
considering the PDL determinist or stochastic. From the op-
tical channel model we have shown that performances are no
more based on the determinant criterion as in Rayleigh fading
channel and that the Silver code outperforms the Golden code
in this configuration.
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