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Abstract-In this paper, the selective time division multiple
access (S-TDMA) strategy is studied in the downlink channel.
This strategy consists in transmitting data to the user with
the largest capacity. The diversity and multiplexing gains that
can be achieved by this sub-optimal strategy are evaluated
and then compared to the optimal gains over the broadcast
channel. Codes construction is then proposed to achieve the
diversity multiplexing tradeoff (DMT) of the S-TDMA. These
codes are extended to the scenario of cooperating asynchronous
broadcasting base stations where new codes that are suitable for
this scenario are proposed and analyzed.

I. INTRODUCTION AND MOTIVATIONS

In this paper, we consider the multiuser downlink context
with one or more cooperating base stations (BS). We assume
that each base station has M transmit antennas and the K
users has N antennas each.

In the single cell context, when perfect channel state in-
formation (CSI) is assumed at both the BS and receivers, it
is well known that the Dirty Paper Coding technique (DPC)
achieves the maximum sum capacity. This technique is the
most efficient strategy that allows a base station to transmit
data to multiple users at same time. In this case, the multiuser
BC channel is equivalent to a M x K N MIMO system in
term of its sum capacity [1]. But, the implementation of DPC
brings high complexity to both the transmitter and the receiver.
In addition, full CSI is required at the transmitter side which
is not practical in a real system.

On the other hand, when no CSI is available at the transmit-
ter and the channels of all receivers are statistically identical,
then, the BC channel is degraded in any order and TDMA is
the optimal strategy. In this case, the multiuser BC channel
is equivalent to a single user M x N MIMO channel. As
we can see, there is a huge gap between the multiuser gains
with and without transmit CSI. Since lack of CSI does not
lead to multiuser gains and since perfect CSIT is not feasible,
it is interesting to assume the knowledge of partial CSI at
the transmitter. A simple technique consists in transmitting
to the user with the strongest capacity [2]. In the following,
this strategy will be referred as selective TDMA. It has been
shown in [3] that for the BC with single antenna users,
when no directional information is available at the transmitter,

the selective TDMA is the optimal strategy that maximizes
the sum capacity. In [4], the Diversity Multiplexing Tradeoff
(DMT) for scalar and vector BC were derived and optimal
schemes that achieve these DMT were proposed.

When multi-cell scenario is considered, it has been shown
recently in [5], that it is better to perform cooperation between
base stations rather than the traditional handover in order to
increase power and rate efficiency. Then, the base stations
cooperate to send data to a selected user on the cell-boundary.
In this context, the different base stations are not necessarily
co-located. This implies a lack of synchronisation between the
different base stations. That's why, it is of interest to construct
delay tolerant space-time code suitable for this scenario.

The remainder of this paper is organized as follows. In
section II, we define the system model and and the notations
used in this paper. In section Ill, we compare the selective
TDMA strategy to the DPC approach in term of diversity and
multiplexing gain. Space time coding that achieve the DMT
for selective TDMA in the single cell-context are proposed
in section IV. New code construction suitable for the multi-
cell scenario with cooperating base stations and single antenna
users is proposed in section V. Finally, section VII concludes
this paper.

II. SYSTEM MODEL

We consider a K receiver multiple-antenna broadcast chan-
nel in which the transmitter has M antennas and each receiver
has N antennas (fig 1). The received signal Yk for user k is
given by

Y k = HkX + Dk k = 1, ... ,K

where H 1,H2 , ... ,HK are the channel matrices (with Hi E
eNXM ) of user 1 to K, with i.i.d unit variance Gaussian
entries. The vector x E eM x 1 is the transmitted signal, and
Dl, ... , Dk are independent complex Gaussian noise terms
with unit variance. The input must satisfy a transmit power
constraint of P, i.e. E[IIxI1 2] P. We assume that each
receiver has perfect knowledge of its own channel matrix.

In terms of notation, we use Ht to indicate the conjugate
transpose of matrix H and IIHII to denote the matrix norm of



H, defined by Proof' The DMT has been defined in [6]. For a MIMO
M x N channel, it is given by the piecewise linear function

dM,N(r) == (M - r)(N - r)

As defined in [2], the TDMA strategy that we consider consists
in transmitting only to the user with the maximum capacity
such as

i* == .max I(X, Y!Hi )
z=1. .. K

where i* corresponds to the selected user and I(X, Y\Hi )

denotes the single user mutual information. The outage prob-
ability is then

•

Prob I(X, YIHi ) < R}
K

IIProb{I(X,YIH i ) < R}
i=l

SNR-K dM,N(r)

Pout(R)

which completes the proof.N Rx antennas
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C. Asymptotic DPC diversity and multiplexing gains

Proposition 2: For the broadcast channel, the optimal diver-
sity gain that can be achieved under a fixed sum rate constraint
is

(2)

(6)

(4)

dDPC == MKN

p(a) SNR-MKN Q

Pbound Pout ::; PTDMA
where PTDMA SNR-MKN from proposition 1 and

Pbound Prob{ Mlog(l + ; R}
-=- SNR-MKN (5)

We prove the result in eq (5) using the pdf of the eigen
exponent associated to given in lemma 1.

Lemma 1: Let a be the eigen exponent associated to

then

and the optimal multiplexing gain is min(M, K N).
Proof' The optimal sum capacity of BC is bounded by

P 2
CTDMA CBc(H; P) M log(l + M IIH ll max) (3)

The first inequality follows from the fact that the selective
TDMA is a sub-optimal strategy. The second inequality is a
result of [theorem 1] in [2], where

== max IIHk I1
2

.
k=1. ..K

The outage probability is therefore bounded by

The proof of this lemma is detailed in appendix A.
This implies that the maximal diversity order that can be

achieved using DPC is M K N. The optimal multiplexing gain
has been already computed by Jindal in [2] which completes
the proof. •

(1)

where r is the total multiplexing gain; dM,N (r) is the diversity
multiplexing tradeoff of M x N MIMO Rayleigh channel.

III. ASYMPTOTIC GAINS: SELECTIVE TDMA VERSUS

DPC

In this section, we compare in the single cell scenario the
selective TDMA strategy to the DPC in term of diversity and
multiplexing gains. First, we define the outage event. The
optimal DMT for the selective TDMA strategy is computed,
and the maximal diversity and multiplexing gains are then
compared to the optimal diversity and multiplexing gains that
can be achieved in the Be case.

Fig. 1. A broadcast channel: K users with N antennas each and a transmitter
with M antennas

A. Outage Definition

In MIMO broadcast channel, when full CSI is assumed at
the transmitter, without any assumption on the transmission
rates, the outage analysis is not meaningful. In this case, the
rate can be adapted to the link in order to prevent outage event
to occur. However, if we impose conditions on the transmitted
rate, the outage probability can be defined with respect to a
fi xed rate constraint.
For DPC schemes, the outage occurs when the rates vector
falls out the capacity region of the BC. This means that the
required sum rate R exceeds the optimal sum rate capacity of
the BC. For the selective TDMA case, outage occurs when the
user with the strongest capacity does not support the required
rate.

B. Optimal Tradeoff for the selective TDMA

Proposition 1: The Diversity Multiplexing Tradeoff (DMT)
of a broadcast channel when the selective TDMA strategy is
used is given by



D. Asymptotic gains: DPC versus TDMA

The comparison of DPC versus selective TDMA is summa-
rized in table I. As we can see, both strategies can achieve
the same diversity order which is M K N. But the throughput
degradation that results from using sub-optimal method rather
than optimal DPC strategies impacts the maximal multiplexing
gain. The optimal multiplexing gain with DPC techniques is
min(M, K N). However, the maximal multiplexing gain that
can be achieved with the selective TDMA is min(M, N).
Regarding this comparison, we can see that for a cell with
a large number of users, the selective TDMA seems to be an
optimal strategy in terms of asymptotic gains.

TABLE I
COMPARISON OF DPC AND TDMA IN TERMS OF ASYMPTOTIC GAINS

IV. SELECTIVE TDMA IN SYNCHRONOUS SYSTEM:
ACHIEVING DMT USING PERFECT CODES

Let i* be the selected user. Then, the equivalent system
model corresponds to

(7)

where Y is the received signal at user i*, X is the transmitted
space time code, n is the additive noise.

A. Single antenna users case

It has been shown in [3] that for the BC with single antenna
users, when no directional information is available at the
transmitter, the optimal strategy consists to select the user
with the strongest capacity. In [4], it has been shown the one-
layered perfect code achieves the DMT which is MK(l- r).

B. General case

The equivalent BC model is given in eq. (7). The system
model is equivalent to a M x N MIMO channel but with
a different distribution than the classical Rayleigh MIMO
channel. It is well-known that the perfect codes [7] are
universal space time codes by construction with non-vanishing
determinant (NVD). This implies that these codes achieve the
DMT regardless of the channel distribution [8].

V. NETWORK MIMO: DELAY TOLERANT SPACE TIME
CODING

In this section, we consider two or more base stations,
each with M transmit antennas, that cooperate to send data
to a selected user on the cell boundary. Cooperation between
base stations is performed instead of traditional handover in
order to increase power and rate efficiency in the downlink
broadcast channel [5]. Let T be the number of base stations,
each with M transmit antennas, cooperating to transmit to the
selected user with N receive antennas such that Q == TM
is the total number of transmit antennas. With more than one

user on the cell boundary, the base stations can select the
user with the largest capacity. Since the base stations are in
different geometrical locations, the receiver experience differ-
ent delay propagations. We suppose that the base stations are
asynchronous by an integer multiple of the symbol period (by
assuming that the fractional delays are absorbed in multipath,
cf. [9] and references therein).

Because of the lack of synchronization, the design criteria
of the space-time code formed by the different base stations
should be modified accordingly [9]. In order for the new code
to achieve full diversity with different delays, the difference
between any two distinct code words should now remain full
rank as one shifts the different rows arbitrarily. For example,
consider the one-layer code for the 2 cooperating single-
antennas BTS defined in section IV-A, given by

with x == 0(81 + (}82) and a(x) == 0(81 + 082) for 81 and
82 from a QAM constellation () == 1+215, '0 == 1-215, 0 ==
1 + i-if), a == 1 + i - {jj which was originally designed
in [4] to achieve the optimal diversity-multiplexing tradeoff
when used by a base station with M == 2 to send data to the
strongest user with N == 1 receive antenna. One can show that
this code will not achieve full diversity if used by two base
stations each with M == 1 antenna and if there is a delay of
one symbol between them

(
Ox 0)
o a(x) 0 .

To remedy this problem, the code can be modified as follows

1 (x ia(x))
J2 x a(x) ,

where it is easily checked that it is delay tolerant (Le.,
the difference between distinct code word matrices remains
full rank when rows are shifted arbitrarily corresponding to
arbitrary delays among the cooperating base stations).

To design a delay-tolerant space-time code of rate N symbol
per channel use one can choose one of the optimized codes in
[9]. However, the temporal length of the codes in [9] increases
exponentially with the number of transmit antennas. The codes
proposed in [10] are square (Le., with temporal length equal
to the number of transmit antennas) but their rate equals Q
symbol per channel use, which is not useful in our case since
often Q == TM is often larger than N in practical scenarios.
Therefore, we propose a small modification on the construction
in [10] in order to fit our purpose. Recall that the main idea in
the construction in [10] is to have the space-time code word
matrix with each element different from any other matrix (such
that the difference matrix has all its entries non zero) and then
to multiply the upper triangular elements with different power
of an algebraic or transcendental number ¢ in order to make it
full rank with arbitrary row shifts. Here we use rate N perfect
space-time codes and layer them using repetition codes. For



example, in the synchronous case, a one-layered perfect code
achieves the optimal DMT [4]

x 0 0
0 (1(x) 0

0 (1Q-l (x)

One way to make the above code delay tolerant is the
following

x a(x) a2(x) aQ-1(x)
1 x a(x) a2(x) aQ- 1(x)

y7J 8BQ

x a(x) (12 (x) aQ- 1(x)

Sum capacity comparison

where 8 denotes the component-wise product and matrix B
is given by

Fig. 2. Comparison of the sum capacity of the DPC technique and the
selective TDMA strategy for a BC with dual transmit antennas and 2 users
with 2 Rx antennas

PER (M : 2; 2 users with N : 2)

Fig. 3. Comparison of the frame error probabilities of the S-TDMA with
a Golden code and the conventional TDMA for 2 bits spectral efficiency
(QPSK)
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The multi-cell case with 2 base stations is then considered.
Each base station has a single antenna and both base stations
cooperate in order to transmit data to a selected single antenna
user at the cell boundary. In figure 4, we show that when
the BS are not synchronous, the one-layer code is no more
suitable when the delay is taken into consideration. This is
traduced by a loss in the diversity gain and the diversity order
in this case is reduced to 2. When the delay tolerant space
time code proposed in section V is used for this configuration,
the optimal diversity gain of 4 remains the same as in the
synchronous case. This explains the large gap in SNR of 10
dB at a PER of 10-2 .

VII. CONCLUSION

In this paper, we consider the selective TDMA strategy
which consists to transmit data to the user with the strongest
capacity. We derive the DMT of the Broadcast Channel (BC)
when this strategy is used. The asymptotic gains in term

1 ¢b1,2 ¢b1,3 ¢b1,Q

1 1 ¢b2 ,3 ¢b2 ,Q

BQ £

1 1 1 cPbQ-1,Q

1 1 1 1

VI. NUMERICAL RESULTS

For illustration, we consider the case of a single-cell where
a broadcast channel has 2 antennas (M == 2) and 2 users with
2 antennas at each receiver. As shown in proposition 1, the
optimal DMT that can be achieved by using the S-TDMA
strategy is 2(2-r)(2- r). This DMT can be achieved using a
universal space-time code which is the Golden code [11] for
this 2 x 2 configuration. The transmitted signal to the best user
is given by

and the number ¢ and its power bi,j are chosen in accordance
with rules in [10].

x == [ n(sl + n(s3 + ] (8)
,n(s3 + ()S4) n(s! + ()S2)

with Sl, S2, S3 and S4 denote the information QAM symbols.
In fig. 2, we compare for this antenna configuration, the

S-TDMA strategy versus the DPC in terms of capacity. As
expected from the theoretical results in table I, we can see
that for this antenna configuration the maximal multiplexing
gain that can be achieved using both strategies (DPC and
selective TDMA) is the same and is equal to 2. But, there
is a throughput degradation that results from the use of a
sub-optimal strategy rather than optimal DPC. However, this
throughput degradation does not affect the diversity order
which is equal to 8 in fig. 3.

The performance of the S-TDMA strategy is also studied
in term of frame error rate. By selecting the user with the
strongest capacity and using the Golden code in fig.3, the
optimal diversity order of 8 can be achieved. This explains the
large gain obtained over time sharing case, where the diversity
order is only 4.



2 cooperating single antenna STS and K = 2 single antennas users.
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ApPENDIX A

PROOF OF LEMMA 1

Let al, ... ,aq denotes the q == min(M, N) eigen expo-
nents of Hk (k == 1 ... K) and (3k denotes the minimal eigen
exponent.

Following [6], the joint pdf is given by

p(al, ... , a q ) SNR- L;=1(2i-l+IM-Nl)a i

of diversity and multiplexing gain are then compared to the
optimal asymptotic gains that can be achieved over a broadcast
channel (BC). We show that both strategies achieve the maxi-
mal diversity gain. But, the throughput degradation that results
from using sub-optimal method such as selective TDMA rather
than optimal DPC strategies impacts the maximal multiplexing
gain. Regarding this comparison, we conclude that for BC
with a large number of users, the selective TDMA seems to
be an optimal strategy in terms of asymptotic gains. We show
also that the perfect codes achieve the DMT of the S-TDMA
strategy.

We extend this study to the multi-cell scenario, where the
base stations cooperate to send data to a user on the cell
boundary. In this case, the base stations are not co-located
and not necessarily synchronized. To resolve the problem of
lack of synchronisation, new delay tolerant space time codes
are proposed.


