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Abstract—In this paper, we consider the isotropic fading
broadcast channel. This channel refers to the case when no
directional information is available at the transmitter side, and
was studied by Jafar et al in [1]. It was shown that the
isotropic vector broadcast channel (BC-V) can be reduced to an
equivalent scalar broadcast channel (BC-S). It is well known from
[2]http://www.pimrc2008.org/ that BC-S is degraded in the same
order as the channel magnitude. This implies that the optimal
strategy that maximizes the sum capacity for BC-S and BC-
V consists on allocating the whole power to the strongest user.
Based on these results, we derive in this paper the Diversity
Multiplexing Tradeoff (DMT) of the isotropic fading BC-S and
BC-V, and we propose optimal schemes that achieve these DMT.

I. INTRODUCTION AND PRIOR ART

Single user MIMO systems have been widely studied in the
wireless communications literature because of the significant
gain provided in term of capacity over single antenna links.
More interestingly, this gain is independent of whether the
channel state information (CSI) is available at the transmitter
or not.

In the multiuser downlink context with M transmit antennas
at the transmitter and K single antenna users, the situation
is considerably different. The sum capacity of the broadcast
channel (BC) depends largely on the availability of CSI at
the transmitter side. When perfect CSI is assumed at both
transmitter and receivers, it is well-known that the Dirty
Paper Coding (DPC) achieves the maximum sum capacity.
Suboptimal linear precoding techniques achieve a large portion
of DPC capacity while being simpler to operate than DPC [3].
In both cases, the maximum multiplexing gain that could
be achieved is equal to min(M, K). But the throughput
degradation that results from using linear precoding rather
than optimal DPC strategies impacts the maximal diversity
order [4]. On the other hand, when no CSI is available at
the transmitter, the channels of all receivers are statistically
identical. Then, the BC channel is degraded in any order and
TDMA is the optimal strategy. In this case, the multiuser BC
channel is equivalent to a single user MISO channel. The
maximal multiplexing gain is one and the maximal diversity
gain that can be achieved is M. As we can see, there is a huge
gap between the multiuser gains with and without transmit
CSI. Since lack of CSI does not lead to multiuser gains and
since perfect CSIT is not available, it is interesting to assume
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the knowledge of partial CSI at the transmitter.

In this paper, we consider the isotropic fading channel
which refers to the case when the transmitter is not able to
discriminate between various directions. The transmitter is not
able to distinguish between the spatial directions of the users’
channels, but is able to track the magnitude of the channel. It
has been shown in [1], that under this assumption, the vector
broadcast channel (BC-V) is reduced to an equivalent scalar
broadcast channel (BC-S). It is well known from [2] that BC-
S is degraded in the same order as the channel magnitude.
This implies that the optimal strategy that maximizes the sum
capacity for both BC-S and BC-V cases consists on allocating
the whole power to the user with the strongest channel.

Over a long enough period, the above scheduling strategy
maintains also fairness when all users experience the same
SNR distribution [5]. It is approximately equivalent to the
Proportional Fair Scheduling.

Our objective in this paper is to analyse the Diversity Mul-
tiplexing Tradeoff (DMT) d(r) of scalar and vector broadcast
channels under a fixed sum rate condition, and to propose
optimal coding schemes that achieve this DMT.

The remainder of this paper is organized as follows. We
define the system model and the notations used in this paper
in section II, and the outage formulation in section III. We
derive in section IV the DMT of BC-S and we find the scheme
that achieves this DMT. Numerical results are given over a
Rayleigh BC-S. In section V, we derive the DMT of BC-V
and we find the space time coding scheme that achieves this
DMT. Numerical results are also provided over a Rayleigh
BC-V. Finally, section VII concludes this paper.

II. SYSTEM MODEL

We consider a K receiver multiple-antenna broadcast chan-
nel in which the transmitter has M > 1 antennas and each
receiver has a single antenna. In the following, the scalar
broadcast channel BC-S corresponds to M = 1, and the vector
broadcast channel BC-V corresponds to M > 1. The isotropic
fading broadcast channel refers to the case when no directional
information is available at the transmitter. In other term, the
transmitter is only able to track the channel magnitude.

The received signal y;, for user k is given by

yr = hpx + ng k=1,...,.K
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Fig. 1. A Broadcast channel with K users with N antennas each and a single
transmitter with M antennas

where hi,hsy,..., hg are the channel vectors (with h; €
C*My of user 1 to K, with i.i.d unit variance Gaussian
entries. The vector x € C'*M is the transmitted signal, and
ni,...,n, are independent complex Gaussian noise terms
with unit variance. The input must satisfy a transmit power
constraint of p, i.e., E[|z||?] < p. We assume that each
receiver has full knowledge of its own channel.

III. OUTAGE FORMULATION

Before going to the DMT analysis, we will start by defining
the outage probability

Pou(R) = Prob {Rym < R} = SNR™¢ (1)

d is the diversity gain of the equivalent channel. R corresponds
to the maximal sum capacity such that Rgy, = Efil R; where
R, denotes the rate assigned to a user ¢ in order to maximize
the sum capacity. For the DMT analysis, we let R scales as
rlog SNR with 7 is the total multiplexing gain.

IV. DMT ANALYSIS FOR THE SCALAR BROADCAST
CHANNEL

The results of the DMT analysis are summarized in the
following proposition:

Proposition 1: The DMT of an isotropic scalar broadcast
channel, with one antenna at the transmitter and K single
antenna receivers is given by

scalar = K (1 =) 2

scalar

The optimal scheme achieving this DMT corresponds to the
transmission of QAM symbols to the user with the strongest
channel.

Based on the results of [2] summarized in section IV-A, the
proof of this proposition is given in subsections IV-B and I'V-C.

A. Scheduling strategy achieving maximum rate

It is well-known from [2] that the BC-S is degraded in the
same order as the channel magnitude. The optimal strategy
consists therefore in allocating the power to the strongest user,
i.e the user with the best channel. In this case, the maximal
sum capacity for the BC-S is given by

Coc(has - hic, p) =log (14 p_max |hil?)

B. Optimal tradeoff for the scalar broadcast channel

At each time symbol, the user with best channel is selected.
The received data at the selected user can be written as

y=hr+z 3)
where h is the fading of the equivalent channel, such that
[1? = max (ka2 . hac?)

h; denotes the fading coefficient between the transmitter and
the user i. u; = |h;|? is exponentially distributed, its pdf can
be expressed as
fui (ul) =e ™
and its cdf is given by
Fu(u)=1—e™
Thus, the pdf of u = |h|? is given by

p(u) = K fu, () (Fu, ()X ' = K e (1— e )7

Let € be an arbitrary small positive number. By approximating
e~ " by 1 — u for small values of u, we get
Prob{|h|* < €} = ¥ )

The outage probability for the equivalent SISO case in equa-
tion (3) is given by

Pw(R) = Prob{log2(1+|h|25NR)§R}

Prob{ h|? < 2:—N_;}

By applying the equation (4) to the expression of outage
probability at high SNR, we get

2R _ 1\ ¥
Pu®~ (Pt )
The outage probability decays as 1/ SNR¥, which means that

the diversity order of the scalar broadcast channel is K. With
R = rlog, SNR, the outage probability is given by

. 1
Pou(R) = SNREG=D )
The diversity multiplexing tradeoff for the scalar BC is thus:
:calar = K(l - T) (6)

C. The QAM is DMT achieving

For the SISO case, the expression of the symbol error
probability [6] for a fixed channel is given by

PeAM _ 40 ( 6 SNR |h|2>

2E 1
At high SNR, by reglacing R with rlog, SNR and averaging
over all the u = |h|

Pe@AM — 4 / Q (\/ 6 SNR'"u) p(u)du
0



After simple manipulations described in appendix A, we get

4K! N —K(1-1)
Pe < — = SNR @)
I] 3SNR'™"+(i+1))
1=0

The selection of the strongest user in a SISO Broadcast
channel achieves the maximum multiuser diversity gain, i.e.
K, and the full multiplexing gain which is equal to 1. From
the expressions of the outage probability in eq (5) and the
error probability in eq (7), we can see that the QAM is DMT
achieving since the exponents of SNR in their expressions are
the same. This is due also from the fact that the QAM is
universal over all fading SISO channels, regardless from the
distribution of the channel.

V. DMT ANALYSIS FOR VECTOR BROADCAST CHANNEL

The results of the DMT analysis are summarized in the
following proposition:

Proposition 2: The DMT of an isotropic vector broadcast
channel, with M antennas at the transmitter and K single
antenna receivers is given by

@oeee = MK(1—1) (8)

vector

In this case, the one-layered perfect code combined with the
selection of the strongest user achieves this DMT.

Based on the result of [1] summarized in section V-A, the
proof of this proposition is given in subsections V-B and V-C.

A. Scheduling strategy achieving maximum rate

Lemma 1 (Same as Theorem 6 and Lemma 4 in [1]):

The capacity region of the isotropic vector fading broadcast
channel with perfect CSI at the receivers and only a
knowledge of magnitudes at the transmitter is identical to
the capacity region of the equivalent scalar fading Gaussian
broadcast channel. The fading vector broadcast channel is
therefore degraded in the same order’s as the users’ channel
magnitudes. It is also well known that the sum capacity for
a degraded channel is achieved by single-user transmission
to the most capable user. That’s why, the optimal strategy
in the BC-V case that achieves the sum capacity consists in
allocating the whole power to the strongest user.

B. Optimal tradeoff for the vector broadcast channel
The outage probability of the equivalent system is given by

Pow(R) = Prob {10g2 (1 + % ||h||2> < R}
M(2F -1)
= P 2o 2\e — )
rob{”h” S —sNR }
where
B2 = max (Wl el .. ) ©)

Lemma 2: Let € be an arbitrary small positive number, and
|h||? denotes the random variable described by (9), then

Prob([[h|]? < €) ~ %EMK (10)

Proof: See appendix B. n
At high SNR, the outage probability is obtained by applying
lemma 2:

Pour(R) ~ 7 SNR

1 (M(zR - 1))"“‘

The outage probability decays as 1/SNRM K which means
that the diversity order of the channel that can be achieved us-
ing this strategy of scheduling is M K. With R = r log, SNR,
the outage probability is given by

MMK

Pout(r) ~ = M1 SNRMEA-

MK r\ MK
M (SNR > an

M! SNR
The diversity multiplexing tradeoff for the BC-V is thus:

d:ector = MK(l - ’I") (12)

C. Achieving DMT using one layer of the perfect codes

The DMT of the isotropic BC-V can be achieved using one
layer of the perfect code. The received signal is

Yixm =hixmuXpxm +nixm 13)
where
T 0 0
X = diag (Gs) = 0 a‘(ac) (14)
0 ... 0 UMPI(:L-)

with GGT = I and E[XX] = I. We assume here that the
channel of each user remains constant over one codeword.
The one-layer perfect code converts the MISO channel into
M -parallel SISO channels. In order to prove the optimality of
these codes, we will prove in a first time that these codes are
universal over the equivalent M-parallel SISO channels. This
conversion into parallel channels is approximately universal
for the class of MISO channels with i.i.d fading coefficients
[6], which occurs when the selection strategy is used.

1) Universality of the code: The one-layer perfect code
converts the MISO channel into M parallel SISO channels.
The equivalent model is given by

Yrysxm =HyxmXpxm + Nyxwu 15)
with Y = diag (y), H = diag (h) and N = diag (n).
Over these M parallel SISO channels, the coding scheme X is
universal since X is 1-NVD scheme over the M x M MIMO
channels [Section 1.4.3 in [7]].

Although this conversion is DMT achieving, there is a loss
in SNR for the same error probability peformance due to the
loss in term of capacity.



2) Outage of the equivalent model: For the equivalent
model in eq (15), the instantaneous capacity per channel use
is

Cry = % log det(I + SNR H E[XX'] H')
1
M

By using [Theorem 16.8.4 in [8]], for any positive definite
matrix M x M matrix A

det(A) < (T‘(A)>M

log det(I + SNR HH')

M

Notice that Tr(I + SNR HH') = M + SNR||A/||2. Then, after
simple simplification

SNR

Crs < log (1 3 ||h||2) = Cmiso (16)

The outage probability of the equivalent system is therefore
Pou,e = Prob {Crs < rlog SNR} > Py = SNR™MK(1-1)
which ends the proof.

VI. NUMERICAL RESULTS

For illustration, we consider an isotropic BC channel with
2 antennas at the transmitter (M = 2) and 2 single antenna
receivers (K = 2). The optimal DMT that can be achieved
in this configuration is 4(1 — r). As shown in section V, the
selection of the strongest user combined with the use of one-
layer of the Golden code [9] achieves this DMT. The codeword
of the strongest user is given by

x-un(a(2)

. 1 (o of
with G = Zla ad)
1+i—40 and @ = 1+i—1i0. s; and s; denote the information
QAM symbols,

Since the one-layer of the perfect code converts the 2 x
1 MISO channel into 2 parallel SISO channels, we compare
these two schemes in terms of capacity and outage behavior.
There is a small gap between the capacity of the 2 schemes,
as shown in fig. 2. This difference is explained by the relation
between their capacities, as presented in eq (16).

This gap corresponds to a 1.5dB loss in SNR in terms
of outage probability, as illustrated in fig. 3. Both schemes
achieve the same diversity order, that is equal to four. This
explains the large gain obtained over the time sharing case,
with a diversity order of two.

We also study the performance of the one-layered perfect
code in terms of frame error rate. The perfect code for two
transmit antennas is the Golden Code presented in [9]. In
addition, for this antenna configuration, and only for this one,
we can use another universal space-time code, which is the
Alamouti one (refer to [6] for more details). The simulation
results in fig. 4 show again a difference of 1.5dB between
the Alamouti scheme and the one-layered Golden Code, as

with ¢ = 155§ = 1246 o =

Comparison of the capacity of 2x1 MISO channel and the equivalent 2 parallel SISO channels
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Fig. 2. Comparison of the capacity of the 2 x 1 MISO channel with the
equivalent 2 parallel SISO channels

Outage probability, BC (M = 2, K = 2 users)
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Fig. 3. Comparison of the outage probabilities of the selection with 2 x 1
MISO channel / the equivalent 2 parallel SISO channels and the time sharing
strategy for 2 bits spectral efficiency

expected from the outage behavior. These results also confirm
the same level of diversity for both schemes.

In the general case, when the number of transmit antennas
is greater than two, there is no equivalence to the Alamouti
scheme. The one-layered perfect code is then optimal.

VII. CONCLUSION AND PERSPECTIVE

In this paper, we derived the DMT of the isotropic scalar
and vector broadcast channels (BC-S and BC-V), which have
been previously studied in [1] from a capacity point of view.
It has been shown that the optimal strategy that maximizes
the sum capacity for both BC-S and BC-V cases consists
in allocating the whole power to the strongest user. For the
scalar broadcast channel, the maximal diversity that can be
achieved is K, and the full multiplexing gain is equal to one.
The optimal coding scheme achieving this DMT is the QAM
constellation. For the vector case, the maximal diversity is
MK, and the multiplexing gain is equal to one. This loss in
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Fig. 4. Comparison of the frame error probabilities of the selection with
alamouti / one-layer of the golden code (GC) and the time sharing strategy
with alamouti for 2 bits spectral efficiency (QPSK)

degree of freedom is due to the lack of directional information
at the transmitter side. Thus, in order to more benefit from
multiple transmit antennas, some information about channel
directions should be available at the transmitter.

To ensure fairness, a long enough period must be con-
sidered. To relax this constraint, a selection algorithm could
be proposed taking into account buffer state information and
channel state information. This point will be investigated in a
future work.
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APPENDIX A
ERROR PROBABILITY DERIVATION
By using the Q(u) < exp(—u?/2), the symbol error
probability is

Pe?M < 4/ exp (—3 SNR'~"u) p(u)du
0
Let a = 3 SNR'~". By expanding the above expression, we

get
K-1 i (K—1
-7 | _ Pla)
Pe?*M < 4K E ( L =
=0

a+i+1 | Qo)

Notice that,

(—1)i4K<K2,_ 1) = Res <1—)@ —(i+ 1))

Qa)’
Then
P[a =—(i+ 1)] =4K! Vi
Consequently,
!
Pe < 4K = SNR~K(-7 (17)

K-1
I (3SNR'™" + (i + 1))

=0

APPENDIX B
PROOF OF LEMMA 2

u; = |[hil® are x-square distributed with 2M degrees of
freedom, where the pdf is given by

1 1w
fllhillz(ui) = muy 1 i

and the cdf is

M-1 m
Fippp(u) =1-e™ 37 ~4
m=0
Thus, the pdf of u = ||h|? is
M1 K-1
K 1 _ u™
p||h||2(u) = (M — 1)|uM e [1—e Z ml
' m=0 :
Let ¢ be an arbitrary small value, then
. M-1 K
Prob(hlf < ) = [ ppape(w)du= (1-e7 3 &
J0 m=0 :
Notice that
—€ « em ~ —€ € 1 M M
e me\,e e — Th€ + o(e™)
m=0
1
=~ 1-— —mEMe_E + O(CM)
1
~ 1- MGM + O(EM)
Then, Prob(||h|? < €) ~ f7eME
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