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Abstract—In this work, we propose a novel sequential decoder
for MIMO systems termed the Zigzag Stack decoder. The
algorithm combines the search strategy of the Stack decoder
with the Schnorr-Euchner zigzagging method. We show that the
Zigzag Stack provides ML performance with a reduced com-
plexity compared to the original Stack decoder and a complexity
reduction of 40% in average over the commonly used sphere
decoder.

Index Terms—MIMO systems, Sequential decoders, Stack
decoder, Schnorr-Euchner enumeration.

I. INTRODUCTION

MUltiple antenna technologies play a fundamental role in
the design of most of the successful wireless com-

munication systems due to their potential to increase the
spectral efficiency and the transmission data rates. Several
wireless standards such as the LTE and the WiMAX (IEEE
802.16) have incorporated MIMO communications to enhance
the network performance and take advantage of the diversity
brought by multiple antennas. A main challenge in such
systems is the design of efficient and low-complexity receivers.

Linear structure of both coded and uncoded schemes allows
to decode these systems using lattice decoders [1]. Optimal
performance are obtained when the ML criterion is considered.
In literature, several ML detection algorithms exist including
the Sphere Decoder (SD) [2] and the Schnorr-Euchner [3].
A main drawback of these decoders is their increasing com-
plexity when the constellation size or the number of antennas
increase. Alternatively, suboptimal low-complexity decoders
such as the ZF, the ZF-DFE and the MMSE [4] are imple-
mented in practical systems presenting limited computational
capabilities.

In this work, we are interested in sequential decoding for
MIMO systems. Sequential decoders, mainly the Stack [5]
and Fano [6], were originally used to decode convolutional
codes transmitted over discrete memoryless channels. Later
on, they were rediscovered and adapted for ML detection
in MIMO systems [7]. We focus in this work on the Stack
decoder having lower complexity than the Fano decoder [5].
This algorithm implements a Best-First tree-search strategy to
find the closest vector to the received signal according to the
ML criterion. At each level of the tree, the algorithm generates
all the nodes corresponding to the detected symbols. For an
increasing constellation size and high number of antennas,
the algorithm requires a high computational complexity. In
order to reduce this complexity, the Spherical-Bound Stack
decoder (SB-Stack) has been recently proposed in literature

[8]. The latter combines the Stack search strategy with the
SD search region. The ML solution is sought inside a sphere
centered at the received point. Limiting the search space to a
spherical region under the SB-Stack decoder allows to reduce
the decoding complexity and provide a complexity gain of at
least 30% over the SD.

We propose in this work a novel low-complexity Stack
decoder we term the Zigzag Stack. The algorithm uses in
its essence the best-first tree-search strategy of the Stack
decoder and the Schnorr-Euchner zigzaging technique. We
show through Monte-Carlo simulations that our novel algo-
rithm offers a complexity gain of at least %40 over the SD
while preserving ML performance. Moreover, we provide a
parameterized version of the Zigzag Stack decoder offering a
wide range of performance/complexity tradeoffs ranging from
ML to ZF-DFE performance respectively for a zero-valued
bias and for a bias parameter larger than 10.

II. SYSTEM MODEL AND NOTATIONS

Consider an nt × nr MIMO system with nt transmit and
nr receive antennas using spatial multiplexing. The complex-
valued representation of the channel output is given by:

yc = Hcsc + wc (1)

where Hc ∈ Cnr×nt denotes the channel matrix of elements
drawn i.i.d. according to the distribution N (0, 1) and assumed
perfectly known at the receiver. wc ∈ Cnr is the additive
white Gaussian noise of variance σ2Inr and sc is composed
of the complex-valued information symbols. In order to obtain
a lattice representation of the channel output, we apply the
complex-to-real transformation to get the real-valued system
given by:

y =
[

ℜ (Hc) −ℑ(Hc)
ℑ(Hc) ℜ (Hc)

] [
ℜ(sc)
ℑ(sc)

]
+

[
ℜ(wc)
ℑ(wc)

]
(2)

where ℜ(.) and ℑ(.) denote respectively the real and imaginary
parts of a complex-valued vector. The equivalent channel
output can then be written as:

y = Hs + w (3)

This system is to be considered in the decoding process. When
a length-T Space-Time code is used, the channel output can
be written in the same form of (1) with the equivalent channel
matrix Heq given by:

Heq = HcΦ (4)
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where Φ ∈ CntT×ntT corresponds to the coding matrix of
the underlying code [9]. For ease of presentation and given
that both uncoded and coded schemes result in a same real-
valued lattice representation, we consider in the remaining of
this work the spatial multiplexing and symmetric case with
nt = nr and let n = 2nt.

A. ML Detection

According to the equivalent system obtained in (3), the
received signal can be viewed as a point of the lattice generated
by H and perturbed by the noise vector w. Optimal ML
detection remains therefore to solve for the closest vector in
the n−dimensional lattice generated by H according to the
minimization problem:

ŝ = argmin
sc∈QAM

∥y − Hs∥2 (5)

In this work we are interested in sequential ML decoders
implementing tree-search algorithms. For this reason, we need
to move to the tree structure of MIMO systems. To do so, we
first perform a QR decomposition of the channel matrix such
that H = QR where Q is an orthogonal matrix and R is upper
triangular. Given the orthogonality of Q, (3) is equivalent to:

ỹ = Qty = Rs + Qtw (6)

And the decoding problem remains to solve the equivalent
system given by:

ŝ = argmin
sc∈QAM

∥ỹ − Rs∥2 (7)

The triangular structure of R reduces the search of the closest
point to a sequential tree-search.

Nodes in the tree represent the different possible values of
the symbols si. We recall that si, i = 1, ..., n represent the
real and imaginary components of the information vector sc.
A tree branch represents two consecutive nodes (si+1, si). We
define the weight metric relative to each node si as :

wi(si) =| ỹi −
n∑

j=i

Rijsj |2 (8)

The weight represents a metric for the branch (si+1, si). Due
to the triangular structure of R, we begin the search from the
component sn. We call the child nodes of si the components
si−1 and call a path of depth i in the tree, the length-(n−i+1)
vector defined by s(i) = (sn, sn−1, ..., si). A node being in
depth n is called a leaf node. The cumulated weight of a node
si represents the metric of the path s(i). It is therefore equal
to the sum over all weights for different nodes forming the
path according to:

w(si) =
n∑

j=i

wj(sj) (9)

For a leaf node, the weight w(s1) corresponds to the Euclidean
distance between the received signal ỹ and s(1) and is equal
to | ỹ − Rs(1) |2. Using this definition, the ML metric
minimization of (7) remains to search for the path in the tree
having the least cumulated weight.

III. SEQUENTIAL DECODERS

Sequential decoders were initially introduced for decoding
convolutional codes. They are based on search algorithms in
binary trees where tree’branches represent the binary values
of the code. Two principal algorithms were introduced: the
Fano decoder [6] and the Stack decoder [5]. These decoders
were afterwards generalized to the case of MIMO systems.
The search tree is no longer binary, it contains the different
possible values of the information symbols. It was shown in
[5] that the Stack decoder offers a lower complexity than the
Fano decoder. Before describing our algorithm, we review in
this section the main tree-search strategies existing in literature
and recall the principle of the Stack decoder.

A. Literature Overview on Tree-search Strategies

1) Breadth-first strategy: Using this strategy, the algorithm
starts with the root node and extends all its child nodes existing
at the following level. For each explored node, the algorithm
extends successively all its child nodes until reaching leaf
nodes. Using this approach, the search over the tree is made
in the width sense, i.e the algorithm explores all nodes si

before moving to the level i−1 of the tree in such a way that
all linear combinations s(i) = (sn, sn−1, ..., si) are computed.
This method implements then an exhaustive search over the
tree.

2) Depth-first strategy: Using this strategy, starting from
the root node, the algorithm explores the first child node sn,
then one of its child nodes sn−1, and so on until reaching a
leaf node s1. Given this first path found, the algorithm goes
back to the level 2 in the tree and explores the neighbors of
the already explored node s2. After finding all the possible
paths and computing their corresponding cumulated weights,
the algorithm outputs the shortest path. This strategy is used
in the Sphere Decoder and Schnorr-Euchner decoder.

3) Best-first strategy: This method is an optimized version
of the Breadth-first strategy. The algorithm in this case ex-
plores the paths corresponding to the most promising nodes
based on a predefined cost function. Starting from the root
node, the algorithm explores all child nodes sn and stores
them in a stack in a decreasing order of their cost functions.
The child nodes of the top node in the stack are then generated
and their cost functions are computed. The algorithm stores
then the explored nodes in the stack such that the top node
has the least cost function. The search is continued until a leaf
node reaches the top of the stack.

B. Stack Decoder

The Stack decoder uses a best-first tree-search strategy.
Starting from the root node sroot, the algorithm generates all
child nodes at level n and computes their respective weights.
Nodes are then stored in the stack in an increasing order of
their weights such that the node in the top of the stack has the
least metric. In addition to the nodes, the algorithm stores for
each saved node its weight, its path and its level in the tree.
Given this initial stack, the algorithm generates the child nodes
of the top node in the stack, computes their weights and stores



them in the stack after removing their parent node. The stack
is then reordered and the same processing is performed until a
leaf node reaches the top of the stack. The path corresponding
to this node represents the ML solution.

C. SB-Stack Decoder

When a QAM constellation is considered, which is the case
in this work, the extended nodes at each tree level correspond
to the real and imaginary parts of the constellation points. For
an increasing constellation size, the traditional Stack decoder
requires a high computational complexity since the algorithm
extends all the nodes. In order to reduce this complexity, the
SB-Stack decoder [8] has been recently proposed in literature.
The latter combines the Stack decoding Best-First strategy
with the search region of the Sphere Decoder (SD). The
decoder searches for the closest vector inside a sphere centered
at the received point implementing the stack decoding strategy.
The spherical search region imposes a search interval for each
detected symbol si at level i. Only nodes belonging to these
intervals at each tree level are visited and expanded. Limiting
the search space to a spherical region under the SB-Stack
decoder provides a complexity gain of at least 30% over
the Sphere Decoder. In this work, we propose to reduce the
complexity of the stack decoder by limiting the number of
visited nodes while preserving ML performance.

IV. A NOVEL LOW-COMPLEXITY ZIGZAG STACK

DECODER

The SE decoder uses a depth-first tree-search strategy. It
seeks the ML solution inside a spherical region but in a
different way as the SD does. Initially, the sphere radius is set
to infinity. In a first turn, the decoder finds a first point known
as the Babai point corresponding to the ZF-DFE solution.
Then, the sphere radius is adapted to the distance from the
received point and the Babai point and the decoder continues
its search. Taking the Babai point as a starting point, the
decoder explores the nodes inside the sphere in a zigzag way
between the components of the Babai point. If a point is found
inside the sphere, the radius is updated and the point is saved.

A. Zigzag-Stack Decoding

Inspired from the SE decoder, we propose in this work
a novel best-first tree-search Stack decoding algorithm im-
plementing the zigzag technique of the SE algorithm based
on the orthogonal distance from the received vector to the
hyperplans defined by the generating matrix of the decoding
lattice. Instead of storing at each tree level i, i = n, ..., 1
all the constellation points (tree-nodes) as it is done in the
traditional Stack decoder, we propose to store only the nodes
corresponding to the projection of the received vector on the
corresponding hyperplan of dimension i − 1 as well as its
neighbor nodes counting 2 zigzaging steps, i.e. generating
only at most 3 nodes at each level. The limitation of the
number of generated nodes is validated numerically since the
SE, providing ML performance, does not perform more than
2 zigzags around the ZF-DFE point.

Starting from the root node, the algorithm generates a first
component sn at level n by performing the projection of the
vector ỹ on the nth layer of the upper triangular matrix R
such that:

sn =
[

ỹn

Rnn

]
(10)

where [x] returns the nearest integer to x. Notice that at
this level, the generated component corresponds to the nth

component of the ZF-DFE point. Afterwards, the algorithm
zigzags around this component and generates its two neighbors
sn−1, sn+1. The nodes sn, sn−1, sn+1 are then stored in the
stack together with their paths, depths in the tree, orthogonal
distances and weights computed according to (8). They are
then ordered in an increasing order of their weights. The top
node in the stack is then selected in order to generate its child
nodes at level n−1. To do so, the algorithm uses the orthogonal
distance of ỹ on the (n − 1)th hyperplan generated by the
(n − 1)th layer of the matrix R to compute the component
sn−1 such that:

sn−1 =
[
ỹn−1 − snRn−1,n

Rn−1,n−1

]
(11)

Notice that in order to compute this component, the value of sn

corresponds to the parent node, which is the current top node
in the stack. And given that the nodes are ordered according to
their metrics, the selected top node may not correspond to the
nth component of the ZF-DFE point, therefore, the generated
symbol sn−1 does not necessarily correspond to the (n−1)th

component of the ZF-DFE point. The algorithm zigzags then
around this first node to generate its neighbor nodes sn−1 −
1, sn−1 + 1. The top node in the stack is removed, the stack
is reordered and the algorithm continues in a similar way. For
nodes at levels i = n − 2, ..., 1, the algorithm generates the
component si as well as its neighbor nodes si −1, si +1 such
that:

si =

⎡

⎣ 1
Rii

⎛

⎝ỹi −
n∑

j=i+1

Ri,jsj

⎞

⎠

⎤

⎦ (12)

The algorithm stops when a leaf node reaches the top of the
stack.

B. Decoding Finite Constellation

Our algorithm Zigzag Stack is applicable to decode infinite
lattices in Zn. We provide in the following a modification of
the algorithm to adapt it to finite constellations, particularly to
QAM modulations considered in this work. When information
symbols sc are carved from a finite alphabet, their real and
imaginary parts, which correspond to the detected symbols
over the tree, belong to a finite interval I = [cmin, cmax].
For example, in the case of q−QAM modulations, symbols
sc belong to Ic =

[
±1,±3, ...,±(√q − 1)

]
. After perform-

ing a change of variables, the nodes in the search-tree that
correspond to the used constellation belong to the finite set
I =

[
0, 1, 2, ...,

√
q − 1

]
where cmin = 0, cmax = √

q − 1.
In order to guarantee that the estimated vector belongs to
the considered constellation, the bound constraint should be



satisfied each time a node and its neighbors are generated.
To take this constraint into consideration, we introduce the
function in(x) such that:

in (x) =

⎧
⎪⎨

⎪⎩

[x] , if [x] ∈ [cmin, cmax]
cmin, if [x] < cmin

cmax, if [x] > cmax

(13)

C. Parameterized Zigzag Stack

The original Stack decoder offers ML performance with
high decoding complexity. However, in its parameterized
version, it brings a flexibility in obtaining several perfor-
mance/complexity tradeoffs. This is possible thanks to a bias
parameter b ∈ R+ which is deduced from the weight function,
such that the novel parameterized weight for a node si at level
i in the tree is given by [7]:

wi(si) =| ỹi −
n∑

j=i

Rijsj |2 −b.i (14)

For a bias b = 0, the algorithm returns ML solution. Other-
wise, the algorithm favorizes the nodes the most advanced in
the tree having large values of i then the smallest weights.
Therefore, the larger the value of b, the faster the decoding
process is and the lower the complexity is. Nevertheless,
the returned solution is no longer ML and depends on the
choice of the bias parameter. Since our algorithm is based on
Stack decoding, we propose also in this work a parameterized
version of the Zigzag Stack allowing to have a wide range
of performance/complexity tradeoffs just by varying the bias
parameter in the weight function.

D. Zigzag Stack for Soft-Output Decoding

In addition to hard detection, our proposed Zigzag Stack
is applicable to generate soft outputs. Soft-output decoding in
MIMO systems has been studied before in literatre. Soft infor-
mation is delivered using A Posteriori Probability techniques
in the form of Log-Likelihood Ratio (LLR) values. The main
existing methods to generate these values include two modified
versions of the Sphere Decoder to generate a list of limited size
known respectively as the List Sphere Decoder (LSD) and the
Shifted Spherical List Decoder proposed in [10], [11]. For the
Zigzag Stack decoder, the algorithm generates the ML solution
which corresponds to the first leaf node reaching the top of
the stack while browsing the tree-search. In order to adapt
our Zigzag Stack to soft-output detection, in addition to the
existing stack, a second fixed-size stack is used. The Zigzag
Stack runs in a normal way. When a leaf node reaches the top
of the original stack, the algorithm returns the ML solution
and continues its processing. Each time a leaf node reaches
the top of the stack, this node is stored in the secondary stack.
The obtained near-ML solutions are then used, together with
the ML solution to generate the LLR values for soft-output
detection.

V. SIMULATION RESULTS

We provide in this section numerical results obtained
through Monte-Carlo simulations and evaluating the perfor-
mance and complexity of our proposed Zigzag Stack decoder
and its comparison to existing decoders by averaging over 105

channel realizations. Through simulations, we validated that
the Zigzag Stack provides ML performance as the SD, the
Stack decoder and the SB-Stack. Then, we present numeri-
cal results related to the computational complexity of these
decoders where the total number of multiplications for the
predecoding and the search phase is counted.
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Fig. 1. Total Complexity for 2 × 2 MIMO system using 16−QAM.

We consider in our simulations 16−QAM modulation and
study the 2×2 and 4×4 MIMO schemes. Our numerical results
depicted in Fig.1 and Fig.2 show the considerable complexity
gain offered by our decoder over the existing ones. The Zigzag
Stack provides an average complexity gain of 46% over the
SD for nt = nr = 2 and at least 50% when nt = nr = 4.
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Fig. 2. Total Complexity for 4 × 4 MIMO system using 16−QAM.

In addition, we provide numerical results evaluating the
Symbol Error Rate and the total computational complexity
for different values of the bias parameter b. As illustrated
in Fig.3 and Fig.4, small values of b allow to obtain near-
ML performance which is reached for b = 0. When the bias



increases, the complexity is reduced at the cost of having
worse SER performance. For a bias b ≥ 10, the Zigzag Stack
returns ZF-DFE performance with a very reduced complexity.
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Fig. 3. Symbol Error Rate 2 × 2 MIMO system using 16−QAM.
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Fig. 4. Total complexity for different bias values for the Zigzag Stack decoder
in a 2 × 2 MIMO system using 16−QAM.

VI. CONCLUSION

In this work, a novel low-complexity MIMO decoder based
on sequential decoding is proposed. The algorithm, termed
Zigzag Stack combines the best-first tree-search strategy of
the original Stack decoder with the enumeration technique of
the SE decoder. This combination allows to smartlly cross
the tree while visiting a reduced number of nodes. The
decoder achieves ML performance with a reduced complexity
offering an average complexity gain of at least 46% over the
traditionally used SD. In addition, a parameterized version of
the Zigzag Stack is proposed. By varying the bias parameter,
it is possible to obtain a spectrum of performance/complexity
tradeoffs ranging from ML to ZF-DFE.
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