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Abstract—We address in this paper decoding aspects of the
Compute-and-Forward (CF) physical-layer network coding strat-
egy. Under the CF framework, encoders use a special class of
nested lattice codes and decoders are based on suboptimal mini-
mum distance decoding of unknown performance gap with respect
to optimal decoders. In this work, we develop and assess the
performance of novel decoding algorithms for CF operating in the
multiple access channel. Starting with the Gaussian channel, we
investigate the maximum a posteriori (MAP) decoder. We derive
a novel MAP decoding metric and develop practical decoding
algorithms shown numerically to outperform the original one. For
the fading channel, we analyze the ML decoder for integer-valued
lattices and develop a novel Diophantine approximation-based
near-ML decoding algorithm shown numerically to outperform
the original CF decoder in the 1-D case using Z lattices.

Index Terms—Physical-layer network coding, compute-and-
forward, lattice decoding, maximum a posteriori decoding.

I. INTRODUCTION

LAST few years have witnessed the emergence of a very
promising linear physical-layer network coding proto-

col termed Compute-and-Forward. Introduced by Nazer and
Gastpar in [1], this scheme takes advantage of the multiple ac-
cess interference to achieve higher transmission rates. This new
framework is applicable to any network configuration accomo-
dating source nodes, relays and destinations that communicate
through linear additive white Gaussian noise channels. The role
of a relay node observing the output of a multiple access chan-
nel is to decode a linear integer combination of source code-
words. Given enough linear equations, the end destination in the
network can ideally recover the original source messages with
high transmission rates thanks to the potential properties of
nested lattice codes.

The original decoder for CF consists of a scaling operation
followed by minimum distance decoding. Under this scheme, a
union bound estimate of the error probability at the relays was
derived in [2], and we have addressed in [3] and [4] the end-
to-end error performance evaluation in the multi-source relay
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channel and the two-way relay channel respectively. Later on,
the Maximum Likelihood (ML) decoder was investigated in [5],
[6]. An algebraic extension of CF using lattice partitions related
to finitely generated modules over principal ideal domains was
proposed by Feng et al. in [2] assuming also minimum distance
decoding. These works focus on the information theoretic per-
formance of CF and study the rate achievability considering
high dimensional lattices. What is missing up to now is to
understand the error performance of this strategy in practical
settings (finite lattice dimensions and low-complexity encoding
schemes) as well as its gap to optimal decoders. We try in this
work to study these issues by investigating optimal decoding
criteria for CF in the basic multiple access channel studied
in part in [7]. After reviewing the original CF encoding and
decoding schemes in Section II, our contributions come into
light as follows: in Section III we focus on the Gaussian channel
case. We analyze the MAP decoder for CF in the Gaussian
channel using real-valued lattices. Moreover, we derive a novel
MAP decoding metric based on which we develop novel effi-
cient decoding algorithms shown numerically to outperform the
conventional CF decoder. In Section IV, we investigate efficient
ML decoding for the fading channel considering integer-valued
lattices. We first analyze the general multi-dimensional case.
Then, by analyzing the one-dimensional case, we develop a
novel near-ML decoder based on Diophantine approximation
and show by numerical results its gain over the original CF de-
coder for Z-lattices. Generalization of this decoder to the mul-
tidimensional case as well as its numerical analysis are left for
future works due to its complexity. Finally, main results of this
work are summarized in a concluding section.

II. COMPUTE-AND-FORWARD IN

BASIC MAC: ORIGINAL WORK

A. Preliminaries on Lattice Coding

An n-dimensional lattice ! is a discrete group of rank p,
p ≤ n of the Euclidean space Rn. It is the set spanned by the p
linearly independent vectors v1, . . . , vp of Rn. Explicitly, ! is
given by the set of integer linear combinations as ! = {x =∑p

i=1 aivi, ai ∈ Z}. p is called the lattice dimension and the
vectors v1, . . . , vp represent a non-unique basis of the lattice !.
Any vector x ∈ ! can be written in the form: x = Ms, s ∈ Zn

where M is called a generator matrix of the lattice. The main
characteristic of ! is linearity, i.e. for any a, b ∈ Z and x, y ∈
!, ax + by ∈ !.

A lattice quantizer Q! satisfies for x ∈ Rn, Q!(x) =
arg min

λ∈!
∥x − λ∥. The set of points that quantize to a given lattice
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point is called the Voronoi Region corresponding to the given
lattice point. The fundamental Voronoi Region V(!) of a lat-
tice ! corresponds to the voronoi region of the zero vector. The
modulo operation returns the quantization error with respect to
! such that for x ∈ Rn: [x] mod ! = x − Q!(x).

A nested lattice code C is the set of all points of a lattice !F
(termed the fine lattice) that fall within the fundamental Voronoi
region of a lattice !C (termed the coarse lattice) as: C = {!F ∩
V(!C)} = {λ = [λF] mod !C, λF ∈ !F}.

B. System Model and Assumptions

We consider the real-valued fading Multiple Access Channel
(MAC) composed of N sources Si, i = 1, . . . , N and a common
receiver. Extension of our results to the complex-valued channel
follows by considering the real and imaginary parts of the
channel outputs separately. Source Si delivers a length-k finite
field message wi ∈ Fk

p drawn independently and uniformly. En-
coders E at the sources implement the same mapping φ to map
the messages wi onto codewords xi from the same nested lattice
code C designed using a fine lattice !F and a coarse lattice !C.
Encoded vectors satisfy a symmetric power constraint given by:

1
n

E (∥xi∥) ≤ P, P > 0. (1)

!F corresponds to the coding lattice and !C acts to satisfy the
power constraint P. The codewords are assumed to be indepen-
dent and uniformly distributed over C. The message rate is equal
to r= k

n log p and is the same for all sources. After encoding their
messages, the source nodes transmit their codewords simulta-
neously across the channel. The received vector is written as:

y =
N∑

i=1

hixi + z (2)

where hi ∈ R denotes the fading coefficient from source Si to
the receiver and z ∈ Rn denotes the additive white Gaussian
noise of zero-mean and variance σ 2In. Let h = [h1, . . . , hN]t

denote the channel coefficient vector. In this work we assume
fixed channel vector. We assume also that channel state infor-
mation (CSI) is available only at the receiver and denote by
ρ = P

σ 2 the signal-to-noise ratio (SNR).

C. Decoding Scheme for Compute-and-Forward

The receiver attempts to decode a noiseless integer linear
combination in the form:

λ =
[

N∑

i=1

aixi

]

mod !C , ai ∈ Z, i = 1, ..., N (3)

where the network code vector a = [a1, . . . , aN]t ∈ ZN is cho-
sen by the receiver. The latter is equipped with a decoder
D : Rn → C, that recovers an estimate λ̂ of λ. A decoding error
occurs if λ̂ ̸= λ and the desired equation with a coefficient
vector a is decoded with an average probability of error ϵ if λ̂ !
D(y) and Pr (λ̂ ̸= λ) < ϵ. A computation rate R(h, a) is said
to be achievable if for any ϵ > 0 and n large enough, there exist
an encoder E and a decoder D, such that for any channel vector

h ∈ RN and network code vector a ∈ ZN , the receiver can
recover the desired equation with an average probability of error
ϵ as long as the source message rate r satisfies: r < R(h, a).

The receiver selects a scalar α ∈ R and an integer vector a
and performs the following steps:

1) Scale the channel output: ỹ = αy =
N∑

i=1
aixi +

N∑
i=1

(αhi −

ai)xi + αz. The resulting effective noise zeq =
N∑

i=1
(αhi −

ai)xi + αz is not Gaussian since composed of a quantiza-
tion error involving the original codewords. At this level,

t =
N∑

i=1
aixi ∈ !F.

2) Decode to the nearest point in the fine lattice: t̂ = Q!F(ỹ).
3) Take the modulo operation with respect to the coarse

lattice: λ̂ = [t̂] mod !C.

We summarize the results regarding the CF protocol in the
following theorems [1].

Theorem II. 1 (Computation rate): For a real-valued MAC
with channel vector h, and network code vector a ∈ ZN the
following computation rate Rcomp, for α ∈ R, is achievable:

Rcomp(h, a) = 1
2

log+
(

ρ

α2 + ρ∥αh − a∥2

)
(4)

where log+(x) = max (log(x), 0).
Theorem II.2 (Optimal scaling factor): The computation rate

given in Theorem II.1 is only maximized for the MMSE scaling
factor αopt given by: αopt = ρhta

1+ρ∥h∥2 .
Theorem II. 3 (Optimal network code vector): The optimal

network code vector satisfies:

aopt = arg min
a∈ZN

a̸=0

{atGa} (5)

where G=IN − ρ

1+ρ∥h∥2 hht is definite positive. aopt corresponds
to the shortest vector in the lattice !G of Gram matrix G.

The conventional decoding scheme for CF consists of an
MMSE scaling operation and minimum distance decoding.
The problem is that in presence of the non-Gaussian effective
noise zeq, minimum distance decoding is not optimal and its
performance gap to the optimal decoders is not known espe-
cially in practical settings using finite-dimensional lattices. We
aim in the following to study optimal decoding criteria and
develop practical efficient decoding algorithms. Although we
will consider the real-valued channel, our results hold in the
complex-valued channel case using the same techniques at the
real and imaginary parts of the channel output separately. As a
starting point, we consider in the following section the Gaussian
channel case in which we consider equal unitary channel gains
such that hi = 1,∀ i = 1, . . . , N. The generalization for fading
channels follows in Section IV.

III. EFFICIENT DECODERS IN GAUSSIAN CHANNELS

We are interested within this section in the real-valued
Gaussian multiple access channel using real-valued nested
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lattice coding. By studying this channel model, our objective
is twofold: first investigate optimal decoding for CF in this
specific scenario, develop practical and efficients decoding
algorithms and evaluate their error performance gap to the
conventional decoder. Second, give some insights and tools we
believe will be usefull to analyze the rate achievability under
MAP decoding, an open problem in Information Theory rising
particularly in the uplink transmission in the Gaussian two-way
welay channel [8], [9].

A. Problem Statement

The channel output is given by: y = ∑N
i=1 xi + z. The re-

ceiver aims to decode the noiseless sum λ =
[

N∑
i=1

xi

]
mod !C.

Let Cs denote the sum codebook which is the set of all

sum codewords λs =
N∑

i=1
xi. Given the linear structure of the

coding lattice, Cs is a subset of the fine lattice !F restricted to
a sum shaping region Ss such that all sum codewords Cs fall
within this region. In addition, given that Cs is obtained through
a superposition of the originally transmitted codewords, its
distribution is no longer uniform.

Using the conventional CF decoder, the receiver decodes
λs = ∑N

i=1 xi using an MMSE scaling followed by minimum
distance decoding to the nearest point in the fine lattice. Using
this method, there are three fundamental limitations: i) the

effective noise zeq =
N∑

i=1
(1 − α)xi + αz is not Gaussian, ii) the

shaping constraint is disregarded given that λs is decoded in
!F instead of Cs, and iii) the non uniform distribution of the
sum codebook Cs is not taken into account. A main contribution
of this work is the analysis in the following of the optimal
MAP decoding approach that takes into consideration the above
mentioned drawbacks of the conventional CF decoder. To the
best of our knowledge, this is the first investigation of the MAP
decoder for the CF protocol. We will be interested in decoding
λs = ∑N

i=1 xi given that modulo-lattice operation is done sepa-
rately and does not impact the decoding error. We will evaluate
therefore the error probability at the receiver as:

Pe = Pr(λ̂s ̸= λs).

Under the non-uniform distribution of the sum codebook,
the optimal decoder that minimizes the probability of decoding
error at the receiver is the MAP decoder given according to the
following:

λ̂map = argmax
λs∈Cs

p(λs|y)

= argmax
λs∈Cs

{
p(λs)

1

(σ
√

2π)n
exp

(
−∥y − λs∥2

2σ 2

)}

= argmin
λs∈Cs

{
− ln (p(λs)) + ∥y − λs∥2

2σ 2

}
. (6)

Notice that the MAP decoder does not involve a scaling step
like the conventional decoder keeping the channel noise Gaus-

sian. We aim in the following to develop practical decoding
algorithms that allow to reliably find the optimal MAP estimate
in this optimization problem. For this purpose, we study first the
statistical distribution of the sum codewords. The original code-
words are drawn uniformly and independently from the nested
lattice code C. They are modeled by uniform random vec-
tors of zero-mean (µx = 0) and variance σ 2

x = 1
nE(∥xi∥2) ≤

P for i = 1, . . . , N. Consider now the sum codewords λs =
N∑

i=1
xi obtained through the superposition of the vectors sent

by the sources. Given the independence between the original
codewords, the sum vectors λs are random vectors of mean
µs = Nµx = 0 and variance σ 2

s In = Nσ 2
x In. Since it is hard to

exactly specify the true distribution of the sum codewords, we
use in the following a heuristic model using lattice Gaussian
distributions. This tool arises in several problems in coding
theory [10], mathematics [11] and cryptography [12].

Let fσs(x) denote the Gaussian distribution of variance σ 2
s In

centered at the zero vector such that for σs > 0 and all x ∈ Rn:

fσs(x) = 1

(
√

2πσs)n
e
− ∥x∥2

2σ2
s

Consider also the !F-periodic function defined by:

fσs(!F) =
∑

λs∈!F

fσs(λs) = 1

(
√

2πσs)n

∑

λs∈!F

e
− ∥λs∥2

2σ2
s .

Then we model the distribution of the sum codewords by
discrete Gaussian distributions over !F centered at the zero
vector according to:

p(λs) = fσs(λs)

fσs(!F)
.

It can be seen as a sampling of the Gaussian distribution over
the points of the fine lattice !F.

We illustrate in Fig. 1 two examples of the probability density
function of the discrete Gaussian distribution we consider in our
model and the sum codewords resulting from the superposition
of 2-dimensional lattice codewords for the cases of N = 2 and
N = 5 considering a fine lattice !F of a generator matrix M =[

2 3
3 −1

]
and the coarse lattice !C = 11Z2 (in this case,

the messages delivered by the sources are drawn from F11).
These examples show that the lattice Gaussian distribution fits
our settings. In addition, although the approximation for low
number of users (N = 2) seems to be questionable, we will
show later, by numerical results, that this model is well justified
in the context of lattice network coding even for low number of
sources.

Now, once we have characterized the statistical distribution
of the sum codewords, we go back to the MAP metric. Using
the discrete Gaussian distribution, the decoding rule in (6) is
equivalent to:

λ̂map =argmin
λs∈Cs

{
ln

(
fσs(!F)

)
+n ln (σs

√
2π)+ ∥λs∥2

2σ 2
s

+ ∥y−λs∥2

2σ 2

}
.
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Fig. 1. PDF of the codebook induced by the sum of codewords compared to
the Gaussian model. (a) Probability density function for N=2. (b) Probability
density function for N=5.

The first and second terms in this metric are independent of
the variable λs, they can be disregarded in the optimization over
λs. Then we obtain our novel decoding metric given by:

λ̂map = argmin
λs∈Cs

{
∥y − λs∥2 + β2∥λs∥2

}
(7)

where β = σ
σs

. Using this new metric, we show in
Proposition III.1 that MAP decoding reduces to solve for
a closest vector problem.

Proposition III.1: The MAP decoding metric in (7) is equiv-
alent to find the closest vector in the lattice !aug of generator
matrix Maug = [M βM]t ∈ R2n×n to the vector yaug = [y 0n]t

according to the following metric:

λ̂map = argmin
λs∈Cs

xaug=Maugλs

∥yaug − xaug∥2. (8)

Proof: The decoding metric in (7) can be written as:

λ̂map =argmin
λs∈Cs

{∥∥∥∥

[
y
0n

]
−

[
λs
βλs

]∥∥∥∥
2
}

=argmin
λs∈Cs

∥yaug−Iaugλs∥2 (9)

where Iaug = [In βIn]t ∈ R2n×n is a full rank matrix. On the
other hand, given that the sum codewords belong to the fine

lattice according to the shaping region Ss, any codeword λs can
be written in the form λs = Mu where u ∈ As ⊂ Zn and As
translates the shaping constraint imposed by Ss and can be de-
duced from the shaping boundaries limited by the transmission
power constraint P. Consequently the optimization problem in
(9) is equivalent to solving

λ̂map = argmin
λs∈Cs
λs=Mu

∥yaug − IaugMu∥2 = argmin
λs∈Cs
λs=Mu

∥yaug − Maugu∥2.

(10)

Maug is a full rank matrix and u is an integer vector, then solving
(10) consists in finding the closest vector xaug = Maugu to yaug
in the n-dimensional lattice !aug of a generator matrix Maug.
After finding the optimal integer vector uopt that minimizes
the metric in (10), the optimal MAP estimate is deduced by
λ̂map = Muopt. "

In our implementation, we use a modified version of the
sphere decoder to solve this closest vector problem taking into
account the shaping constraint.

Remark: The MAP decoding metric in (7) involves two terms
each one of them is given by an Euclidean distance. When
the first term is dominant, which is the case when β2 = σ 2

σ 2
s

=
σ 2

Nσ 2
x

≪ 1, the MAP decoding rule reduces to ML decoding
(which is equivalent to minimum distance decoding in this case
since we don’t perform a scaling step). Given that σ 2

x depends
on the power constraint P, we deduce that this case of figure is
likely to happen either at high Signal-to-Noise Ratio or when
Nσ 2

x is sufficiently higher than the noise variance σ 2In. We ex-
pect then that the MAP decoding and the conventional decoder
achieve similar performance at high SNR range. Adversely, at
the low and moderate SNR regime and when the product Nσ 2

x is
small, the second term in the decoding metric applies an incre-
mental constraint that considers the non-uniform distribution of
the sum codewords in Cs which is not taken into account under
the conventional decoder. In this case, we expect that the MAP
decoder outperforms the minimum distance decoding-based one.

We provide in the following proposition an equivalent for-
mulation of the MAP decoding metric.

Proposition III.2: The MAP decoding metric in (7) is equiv-
alent to MMSE-GDFE [13] preprocessed minimum Euclidean
distance decoding according to the metric:

λ̂map = argmin
λs∈Cs

∥Fy − Bλs∥2. (11)

F ∈ Rn×n and B ∈ Rn×n denote respectively the forward and
backward filters of the MMSE-GDFE preprocessing for the
channel y = λs + z such that BtB = (1 + β2)In and FtB = In.

Proof: Let N(λs) denote the metric we aim to minimize
in (7), we have the following:

N(λs) = ∥y − λs∥2 + β2∥λs∥2

= yty − 2ytλs + λt
sλs + β2λt

sλs

= (1 + β2)λt
sλs + yty − 2ytλs

= λt
sB

tBλs + yty − 2ytFtBλs

= λt
sB

tBλs + ytFtFy−2ytFtBλs︸ ︷︷ ︸
∥Fy−Bλs∥2

+ yt(In − FtF)y︸ ︷︷ ︸
*(y)

(12)
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Fig. 2. Error performance for the case n = 2, N = 2, P = 6.5.

where F ∈ Rn×n and B ∈ Rn×n are chosen such that: BtB =
(1 + β2)In and FtB = In. Given that *(y) > 0 and indepen-
dent of λs, minimization of N(λs) is equivalent to minimize
∥Fy − Bλs∥2. The last piece to our proof is to show that the
matrices F and B correspond to the filters of the MMSE-GDFE
preprocessing [13] in the system y = λs + z of input λs and
AWGN z. This proof is provided in Appendix A. "

In order to find the MAP estimate according to the decoding
metric in (11), the receiver first performs MMSE-GDFE prepro-
cessing, then performs minimum Euclidean distance decoding
to find the nearest point to Fy in the lattice of generator
matrix BM according to the shaping constraint imposed by the
subset Cs.

B. Numerical Results

We evaluate in this subsection the performance of the con-
ventional decoder (based on MMSE scaling and minimum
distance decoding) and the proposed MAP decoding algo-
rithm implementing a modified sphere decoder. In addition, for
validating the assumption of Gaussianity law assumption we
considered to derive our MAP decoding metric, we also present
a naive exhaustive search for solving (6). Using this approach,
no assumptions on the distribution of the sum codewords are
considered. The receiver, given the number of sources and the
original codebook C, derives the statistics of the sum codebook
to compute the corresponding values of p(λs) for all codewords
λs ∈ Cs, then, it exhaustively seeks the codeword which maxi-
mizes the decoding metric in (6). We study in our analysis two
lattice examples as described below.

Example 1: 2-dimensional lattice (n = 2) for this example
we consider the same nested lattice code used to get the
statistical distributions plotted in Fig. 1 for N = 2 and N = 5.
The shaping constraint in this case is given by P = σ 2

x = 6.5.
Given the number of sources and the power constraint imposed
by the coarse lattice, we calculate for each case the bounds
requirements to be considered in the decoding process.

Numerical results concerning the case N = 2, depicted in
Fig. 2, show that our proposed algorithm achieves almost
identical performance as the exhaustive search, which confirms
the effectiveness of our metric as well as the validity of the

Fig. 3. Error performance for n = 2, N = 5, P = 6.5.

Fig. 4. Error performance for n = 4, N = 2, P = 1.

Gaussianity law assumption considered to model the sum-
codewords even for the case of low number of sources N = 2.
Moreover, plotted curves show that the MAP decoder out-
performs the conventional minimum distance decoding. The
gain for this case is limited to 0.5 dB for an error probability
equal to 10-1.

Results for the case of N = 5 plotted in Fig. 3 confirm the
previous findings and show that the performance gap between
the MAP and the Minimum distance decoder is also not high.
Common to these two settings is the high value of Nσ 2

x , and
as we expected in our previous remark, MAP and ML achieve
indeed same performance for this case of figure.

Example 2: 4-dimensional lattice (n = 4) In this example we
consider the integer fine lattice !F of a generator matrix the
identity I4 together with a cubic shaping region according to
P = 1. The aim of considering this example is to analyze the
performance of the MAP decoder when the lattice dimension
increases. Simulation results depicted in Fig. 4 show that our
proposed MAP algorithm achieves a gain of 1 dB at a codeword
error rate of 10-3 over the minimum distance decoder and has
a small gap to the decoder based on exhaustive search. This
case shows the merit of applying the MAP decoding in settings
where the product Nσ 2

x is small.
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IV. EFFICIENT DECODERS IN FADING CHANNELS

We move in this section to the general case of fading chan-
nels. The tools we will use in our analysis are valid only in the
case of integer lattices, thus we will consider an n-dimensional
nested lattice code C ⊂ Zn involving a fine lattice !F ⊂ Zn of a
generator matrix M and a coarse lattice !C ⊂ Zn. For this case,
M is an integer full rank matrix. We will start with the multi-
dimensional case which was independently studied in [6] then
we provide more in depth analysis regarding the one-
dimensional case.

A. Problem Statement

After selecting α and a, the receiver scales the channel output
to get:

ỹ =
N∑

i=1

aixi +
N∑

i=1

(h̃i − ai)xi + z̃ (13)

where h̃i =αhi, i=1, . . . , N and z̃=αz, and attempts to decode

λ=
[

N∑
i=1

aixi

]
mod !C. We are concerned in this part with de-

coding the integer combination t=
N∑

i=1
aixi. The modulo-lattice

operation is performed in a second stage separately and does not
impact the error performance. Thus, we evaluate the decoding
error probability defined as: Pe =Pr(t̂ ̸= t). Given the vector a and
the shaping boundaries for the original codewords, it is known
that the desired vector t belongs to a subset Cf in the fine lattice
!F determined using the original shaping constraint of the source
codewords and the knowledge of the network code vector a.
However, this shaping constraint is disregarded under the con-
ventional CF decoder. In addition, in contrast to the Gaussian
channel case, the statistical distribution of the combination code-
words is unknown and difficult to model since it depends on the
channel realizations. For this reason, we assume in the following
a uniform distribution of the subset Cf and analyze the ML
decoder that takes into consideration the shaping condition.

B. ML Decoding Metric

The ML criterion is based on maximizing the conditional
probability p(ỹ|t) according to:

t̂ = argmax
t∈Cf

p(ỹ|t). (14)

Given that t =
N∑

i=1
aixi, we can equivalently write (14) as:

t̂=argmax
t∈Cf

∑

(x1,...,xN )∈CN
∑N

i=1 aixi=t

p
(
ỹ |(x1, . . . , xN))p(x1, . . . , xN). (15)

The transmitted codewords are assumed to be uniformly
distributed over the nested lattice code C, i.e., x1, . . . , xN are
equiprobable. On the other hand, we have,

p(ỹ|x1, . . . , xN) ∝ exp

⎛

⎝ −1
2σ̃ 2

∥∥∥∥∥ỹ −
N∑

i=1

h̃ixi

∥∥∥∥∥

2⎞

⎠ (16)

where σ̃ 2 = α2σ 2. Combining (16) and (15), we get:

t̂ = argmax
t∈Cf

∑

(x1,...,xN )∈CN
∑N

i=1 aixi=t

exp

⎛

⎝ −1
2σ̃ 2

∥∥∥∥∥ỹ −
N∑

i=1

h̃ixi

∥∥∥∥∥

2⎞

⎠ . (17)

Let

ϕ(t) =
∑

(x1,...,xN )∈CN
∑N

i=1 aixi=t

exp

⎛

⎝ −1
2σ̃ 2

∥∥∥∥∥ỹ −
N∑

i=1

h̃ixi

∥∥∥∥∥

2⎞

⎠ . (18)

Our objective in the following is to express ϕ as a function
of the desired equation t. To this end, we need to express the
codewords xi, i = 1, . . . , N as functions of t. Given the integer
nature of the vector a and the codewords xi, this task requires

to solve the system of Diophantine equations t =
N∑

i=1
aixi. For

n−dimensional vectors this can be done using the Hermite
Normal Form (HNF) of integral matrices [14],[15] as explained
in the following.

Define the integer-valued matrix M̃ ∈ Zn×nN as M̃ =
[a1Ma2M . . . aNM]. The Hermite Normal Form of M̃ is such
that: M̃U =

[
0n×(N−1)n|B

]
where U ∈ ZnN×nN is a unimodular

matrix, and B ∈ Zn×n is an invertible matrix. Then, we decom-
pose the matrix U in the form:

U=

⎡

⎢⎢⎢⎣

U1 V1
U2 V2
...

...

UN VN

⎤

⎥⎥⎥⎦
, Vi ∈ Zn×n, Ui ∈ Zn×n(N−1). (19)

Using the HNF of the matrix M̃ and this decomposition of the
matrix U we can write:

N∑

i=1

aiMVi =B⇔
N∑

i=1

aiMViB−1 =In

⇔
N∑

i=1

aiMViB−1t= t. (20)

By identifying equation (20) to the system
N∑

i=1
aixi = t we get a

particular solution of the system of Diophantine equations as:

xi = MViB−1t, ∀ i = 1, . . . , N.

The set of all solutions is then given by:

xi = MViB−1t + di

where di belong to the lattice of a generator matrix MUi for
i = 1, . . . , N.

C. Likelihood Function

We go back now to the ML decoding rule defined in (17)
and replace the vectors xi by the solution of the Diophantine
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equations we obtain

t̂ = arg max
t∈Cf

∑

q∈AL

exp
( −1

2σ̃ 2 ∥ω(t) − q∥2
)

(21)

where q =
N∑

i=1
h̃idi belongs to AL, a finite subset of the lattice L

of a generator matrix
N∑

i=1
h̃iMUi determined by the boundaries

of the original codewords according to the transmission power

constraint. Moreover, ω(t) = ỹ −
N∑

i=1
hiMViB−1t. To find the

ML solution, we need to maximize the likelihood function:

ϕ(t) =
∑

q∈AL

exp
( −1

2σ̃ 2 ∥ω(t) − q∥2
)

. (22)

This function is a sum of Gaussian measures, it is periodic and
depends on the Signal-to-Noise Ratio. Additionally, its most
important characteristic is that it can be flat, which means that
for some values of the channel coefficients, the network code
vector and the Signal-to-Noise Ratio, the maximum of ϕ can be
achieved by several values of t, which makes the ML decision
ambiguous and results in decoding errors. This flatness behav-
ior is characterized by Belfiore and Ling in [6] by the so called
the Flatness Factor. For the ML decoding rule, we should
minimize the flatness factor of the lattice L over which is per-
formed the sum of the Gaussian measures in order to be able to
distinguish the maximum values of the likelihood function and
perform a correct decoding decision. Solving the ML decoding
metric requires more research on the sum of Gaussian mea-
sures. Alternatively, authors in [6] propose an approximation
of ML decoding based on Diophantine approximation and con-
sists in approximating the sum of the Gaussian functions by a
single one according to the optimization problem given by:

t̂ = argmax
t∈Cf

q∈AL

∥ω(t) − q∥2 (23)

In order to solve the multi-dimensional case, we need to de-
velop efficient algorithms that handle simultaneous Diophan-
tine approximations which requires deeper investigation. In this
work, we will study in the following the 1-D case in more
details and leave the multi-dimensional case for future works
for complexity reasons.

D. 1-D Lattices Case Study

Here, we focus on the case of 1-D lattices in Z and N = 2.
Transmitted codewords x1 and x2 are just integer scalars drawn
i.i.d. from the integer constellation over Z defined by C =
[−Sm, Sm] for Sm ∈ Z+. This integer codebook can be seen as
a nested lattice code in Z involving the fine lattice !F = Z and
the coarse lattice !C = 2SmZ. The channel output in this case is
given by: y = h1x1 + h2x2 + z, with hi ∈ R and z ∼ N (0, σ 2).
The receiver selects the optimal scaling parameter and the op-
timal network code vector a = [a1 a2]t and attempts to decode
the integer combination t = a1x1 + a2x2 from the integer set Cf

determined by Sm and the values of the coefficients a1 and a2.
The scaled channel output is given by:

ỹ = a1x1 + a2x2 + (h̃1 − a1)x1 + (h̃2 − a2) x2 + z̃

h̃i = αhi, i = 1, 2; z̃ = αz. (24)

Under these settings, the ML solution is given by:

t̂ = argmax
t∈Cf

∑

(x1,x2)∈C2
a1x1+a2x2=t

exp
( −1

2σ̃ 2 ∥ỹ − h̃1x1 − h̃2x2∥2
)

. (25)

And the likelihood function is given by:

ϕ(t) =
∑

(x1,x2)∈C2
a1x1+a2x2=t

exp
( −1

2σ̃ 2 ∥ỹ − h̃1x1 − h̃2x2∥2
)

. (26)

Our aim now is to express ϕ as a function of t only. Therefore,
we need to solve the Diophantine Equation t = a1x1 + a2x2.
Let g = a1 ∧ a2 denote the greatest common divisor (gcd) of a1
and a2. If the desired scalar t is a multiple of g, the Diophantine
equation admits an infinite number of solutions in the form:

{
x1 = u1

g t + a2
g k

x2 = u2
g t − a1

g k
(27)

where k ∈ AZ ⊂ Z such that the shaping constraint for the
desired combination is satisfied. (u1, u2) is a particular solution
of the equation a1x1 + a2x2 = g that can be derived using the
Extended Euclid Algorithm [16]. If t is not a multiple of g, then
the Diophantine equation has no solutions. For what concerns
our case, the network code vector a corresponds to the coor-
dinates of a lattice shortest vector, then the coefficients a1 and
a2 are coprime. Thus, the Diophantine equation under question
has always infinite solutions given by the system in (27) with
g = 1. Accordingly, we can write the ML solution in (25) as

t̂ = argmax
t∈Cf

∑

k∈AZ

exp
( −1

2σ̃ 2 ∥ỹ − γ t + βk∥2
)

︸ ︷︷ ︸
ϕ(t)

(28)

where γ = h̃1u1 + h̃2u2 and β = a1h̃2 − a2h̃1.
1) Properties of the Likelihood Function: ϕ is a sum of

Gaussian functions, it is periodic with mean m = ỹ, period p =
β

2σ̃ 2 and width w = γ

2σ̃ 2 . In addition, ϕ depends on the SNR, the
channel coefficients, the coefficient vector a and obviously on
the constellation bounds defined by Sm. We illustrate in Fig. 5(a)
an example of the likelihood function obtained for Sm = 5, x1 =
3, x2 = 4 at SNR = 10 dB and h = [−1.191 1.189]t. The opti-
mal network code vector for this case is equal to a = [−1 1]t.
Accordingly, the desired combination should be equal to t = 1.
The corresponding likelihood function depicted in Fig. 5(a) is
well maximized at t̂ = 1. In this case, it is easy to decode
the maximum of ϕ(t) since we can distinguish a peak corre-
sponding to the unique t̂ for which this function is maximized.

— Flatness behavior of the likelihood function as we men-
tioned in the previous subsection, one of the properties
of the likelihood function is that it can be flat. This
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Fig. 5. Examples of the likelihood function. (a) Sm = 5, SNR = 60 dB. (b) Sm = 5, SNR = 60 dB. (c) Sm = 10, SNR = 60 dB.

behavior is shown through Fig. 5(b) obtained at SNR =
60 dB Sm =5, x1 =−5, x2 =−4, h=[1.3681 − 0.2359]t,

a = [−1 0]t. The maximum of the likelihood function is
obtained for two integer values t1 = 5 and t2 = 6 while
the correct decodable value must be t̂ = 5 for the corre-
sponding values of x1 and x2. In this case, the receiver can
make a decoding error.

— Impact of the constellation size: the likelihood function
depends on the constellation size and the values of Sm.
When the size of the codebook increases, the set Cf over
which the desired combination t should be searched be-
comes large. Consequently, the width of ϕ becomes large
and the likelihood function is made flat. Thus, decoding
the maximal value of t becomes ambiguous. An example
of this scenario is illustrated in Fig. 5(c) obtained for
Sm = 10, SNR = 10 dB, x1 = −2, x2 = −4, h= [1.4741
− 0.2839]t, a = [−1 0]t. We can see that the likelihood
function attains its maximum for t = 2 and t = 3 while
the correctly decoded value is t̂ = 2. This ambiguity leads
to decoding errors.

2) Diophantine Approximation: The sum of Gaussian func-
tions in the likelihood function makes the ML decoding hard
to handle in practice. For easy implementation, we propose
in the following a near-ML decoder by approximating the
sum of the Gaussian measures by a single function. We use
the result stating that for t ∈ Z, ϕ is maximized for t which

minimizes |ỹ − γ t + βk|. Given this observation, we define a
new optimization problem equivalent to (28) by:

t̂ = arg min
k∈AZ

t∈Cf

|ỹ − γ t + βk|. (29)

Let β ′ = β
γ and y′ = − ỹ

γ , then this minimization problem is
equivalent to:

t̂ = arg min
k∈AZ

t∈Cf

|β ′k − t − y′| (30)

This problem corresponds to solving the Inhomogeneous Dio-
phantine Approximation in the absolute sens (IDA) [17],
F(t, k), defined as, F(t, k) = |β ′k − t − y′|. It consists in find-
ing the best rational approximation t

k , k ∈ Z of the real number
β ′ assumed an additional real shift y′. In our setting, the set of
the Diophantine approximations is determined by the limits im-
posed by the shaping boundaries of the subset Cf . In literature,
there exist simple and easy-to-implement algorithms to solve
Diophantine approximations of reals. The best known one is
the Cassel’s Algorithm [18]. In this work we adopt a modified
version of this algorithm to take into consideration the shaping
constraint and ensure that the resulting solution (t, k) satisfies
t ∈ Cf . Details of this algorithm are provided in Appendix B.

3) Simulation Results: We address now the performance
evaluation of the conventional decoder and the proposed
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Fig. 6. Error probability for Sm = 5.

Inhomogenous Diophantine Approximation (IDA) decoder. We
are interested in our simulations only in the one-dimensional
case due to the complexity of the multi-dimensional scenario. In
addition, we consider the same settings analyzed previously
involving two sources transmitting integer symbols x1 and x2
drawn from the constellation set C = [−Sm Sm]. We analyze the
error probability on decoding t. For what concerns the conven-
tional decoder, the receiver solves for the best network code
vector a solution of the shortest vector problem, scales the
channel output, then decodes to the nearest integer value. For
the IDA, given the vector a, the receiver implements first the
Extended Euclid algorithm to solve the Diophantine equation
a1x1 + a2x2 = g, then uses the modified Cassel’s algorithm to
find the best inhomogeneous Diophantine approximation.

In Fig. 6, minimum distance decoding and IDA decoding
are compared for Sm = 5. Our results show that both decoding
methods achieve same performance for low and moderate SNR
values.

The importance of the IDA method rises asymptotically.
In Fig. 7, we analyze the performance of the proposed IDA
decoding for three values of the constellation bound, defined by
Sm = 5,7,10. This is to understand the impact of the constella-
tion size on the diversity order. Fig. 7 illustrates that for Sm = 5
or less, the system has a diversity order equal to 1 for real
symbols (which would correspond to a diversity order equal to 2
with complex-valued symbols). However, for higher constella-
tion size, e.g., for Sm = 7 and Sm = 10, the diversity order is
limited to 1/2. This is because when the constellation range in-
creases, the likelihood function becomes flat, which makes the
error function F(t, k) subject to the Diophantine approximation
flat. This result confirms our previous analysis on the impact
of the constellation on the likelihood function.

V. CONCLUSION

This work was dedicated to decoding aspects for the
Compute-and-Forward protocol in the basic multiple access
real-valued channel. In the first part, we addressed the Gaussian
channel case using real-valued lattices. After analyzing the
MAP decoding rule, we derived a novel decoding metric and
developed practical algorithms based on lattice spherical

Fig. 7. Error probability using the IDA decoding.

decoding showed to outperform the standard minimum dis-
tance decoder. In the second part, we studied the fading chan-
nel case assuming integer-valued lattices. We analyzed the
n-dimensional case and proposed a novel near-ML decoder
based on Diophantine approximation. Numerical results for the
1-D scenario show the gain of this method over the conven-
tional CF decoder at high SNR range. Having developed MAP
decoders in the Gaussian channel, we aim in the future to in-
vestigate the information theoretic performance of this decoder
and evaluate the achievable rate in the two-way Gaussian relay
channel. Additionally, we will explore ML decoders for the
fading channel using multi-dimensional lattices and assess their
complexity compared to the conventional CF decoder.

APPENDIX A
MMSE-GDFE PREPROCESSING FILTERS

We aim to show that the matrices F and B in the equivalent
MAP decoding metric correspond respectively to the forward
and backward filters of the MMSE-GDFE preprocessing in the
channel y = λs + z with input λs such that 1

nE(∥λs∥2) = σ 2
s .

Let Fm and Bm be the filters of the MMSE-GDFE preprocess-
ing such that: Fmy = Fmλs + Fmz = Bmλs + (Fm − Bm)λs +
Fmz. Let w = (Fm − Bm)λs + Fmz be the effective noise. First,
with reference to [13], it is known that the MMSE-GDFE
filters are connected, via the relation: Fm = B−t

m Ht for a general
multipath fading channel with channel matrix H. In our case,
the corresponding matrix in the studied Gaussian channel is the
identity matrix, then we have the relation between the forward
and backward matrices as Fm = B−t

m . On the other hand, the
MMSE-GDFE filters correspond to the minimization of the
variance ε of the effective noise given by:

ε = 1
n

E[wtw] = 1
n

E
[
tr(wwt)

]

= 1
n

tr
(
E

[
(Fm − Bm)λsλ

t
s(Fm − Bm)t] + E

[
FmzztFt

m
])

= 1
n

tr

(
(Fm − Bm) E

[
λsλ

t
s
]

︸ ︷︷ ︸
σ 2

s In

(Fm − Bm)t + Fm E[zzt]︸ ︷︷ ︸
σ 2In

Ft
m
)

= σ 2
s

n
tr

(
Fm(In+β2In)Ft

m−FmBt
m−BmFt

m+BmBt
m

)
(31)
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For notational reason, we introduce the matrix T such that
TTt = (1 + β2)In where T should be a unimodular matrix and
let G such that G = FmT, then ε equals to:

ε = σ 2
s

n
tr

(
(G − BmT−t)

(
Gt − T−1Bt

m

)

+ Bm

(
In − (TTt)−1

)
Bt

m

)

= σ 2
s

n
tr

(
(G − BmT−t)

(
Gt − T−1Bt

m

)
+ β2

1 + β2 BmBt
m

)

For fixed Bm we seek first the optimal forward matrix Fm
which minimizes ε. This corresponds to have G = BmT−t

which results in: Fm = 1√
(1+β2)

Bm. We get:

εmin = σ 2
s

n
β2

1 + β2 tr
(
BmBt

m
)

= σ 2
s

n
β2

1 + β2 tr
(
Bt

mBm
)

(32)

We have Bt
mBm = (1 + β2)In which corresponds to: εmin =

σ 2
s β2. Now, we will show that F = Fm and B = Bm. First, F

and B satisfy same constraints as the MMSE-GDFE filters. The
last piece to prove the equivalence then is to prove that F and B
allow to minimize the variance of the effective noise w. Using
equation (31) we compute the corresponding variance refered
to εeq:

εeq = σ 2
s

n
tr

(
(F − B)(F − B)t + β2FFt

)

= σ 2
s

n
tr

(
(1 + β2)FFt − FBt − BFt + BBt

)

(a)= σ 2
s

n

(
(1 + β2)tr(FFt) − tr(FBt) − tr(BFt) + tr(BBt)

)

(b)= σ 2
s

n

(
(1 + β2)tr(FtF) − tr(BtF) − tr(FtB) + tr(BtB)

)

(c)= σ 2
s

n

⎛

⎜⎝(1 + β2)tr(FtF) − 2 tr(FtB)︸ ︷︷ ︸
n

+ tr(BtB)︸ ︷︷ ︸
(1+β2)n

⎞

⎟⎠

= σ 2
s

n

(
(1 + β2)tr(FtF) + (β2 − 1)n

)

where (a) follows from linearity of trace, (b) follows from com-
mutativity of trace of matrices (tr(AB) = tr(BA)), (c) follows
using tr(A) = tr(At). Finally, we use the relation FtB = In to
deduce that FtF = (BtB)−1 which gives tr(FtF) = n

1+β2 . We

get then εeq = σ 2
s β2 = εmin.

APPENDIX B
MODIFIED CASSEL’S ALGORITHM

In this appendix we provide a modified Cassels’s algorithm to
solve the Inhomogenoues Diophantine Approximation in (30).
The algorithm requires as inputs: the real values y′ = − ỹ

γ , β ′ =
β
γ and the shaping limit At defined given the original codebook
C and the network code vector a. The algorithm outputs the pair
(t̂, k̂) ∈ (At, N) as the best approximation of the real β ′ given

the additive shift y′. The constraint in line (5) allows to restrict
the search in the finite set Cf .

1: η1 = −1; η0 = β ′; ζ1 = −y′;
2: t0 = 0; t1 = 1; T1 = 0;
3: k0 = 1; k1 = 0; K1 = 0;
4: n = 2
5: while ηn−1 ̸= 0 ∧ ζn−1 ̸= 0 ∧ Tn−1 ∈ At do
6: an =

⌊−ηn−2
ηn−1

⌋
;

7: tn = tn−2 + antn−1; kn = kn−2 + ankn−1;
8: ηn = ηn−2 + anηn−1;
9: if Kn−1 ≤ kn−1 then

10: bn =
⌊−ζn−1−ηn−2

ηn−1

⌋
;

11: Tn =Tn−1+tn−2+bntn−1; Kn =Kn−1+kn−2+bnkn−1;
12: ζn = ζn−1 + ηn−2 + bnηn−1;
13: else
14: Tn = Tn−1 − tn−1; Kn = Kn−1 − kn−1;
15: ζn = ζn−1 − ηn−1;
16: end if
17: n = n + 1;
18: end while
19: t̂ = Tn;
20: k̂ = Kn;
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