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Abstract—In this work, we revisit the structure of weight
matrices for Linear Dispersion STBCs to admit ML decoding
with low-complexity. We first propose novel sufficient design
criteria for linear STBCs considering an arbitrary number
of antennas and an arbitrary coding rate. Then we apply
the derived criteria to three families of codes, multi-group

decodable, fast decodable, and fast-group decodable codes.
We provide analytical proofs showing that the ML-decoding
complexity of such codes depends only on the weight matrices
and their ordering and not on the channel gains or the number
of antennas and explaining why the so far used Hurwitz-
Radon theory-based approaches do not exactly determine the
complexity of all classes of STBCs under ML decoding.

Keywords—Low-complexity decoding, maximum Likelihood

decoding, fast decodable, Space-Time Block codes.

I. INTRODUCTION AND PRELIMINARIES

We consider in this work transmission over a coherent
block-fading MIMO channel using nt transmit and nr

receive antennas and coded modulations using length-T
linear Space-Time Block Codes. The channel output is
written as:

Y = HX+ Z (1)

where X 2 Cnt⇥T is the codeword matrix sent over T

channel uses and belonging to a codebook C. Z 2 Cnr⇥T

represents a complex-valued AWGN of i.i.d. entries of
variance N0 per real-valued dimension. The channel fadings
are represented by the matrix H 2 Cnr⇥nt . We consider
coherent transmission where the channel matrix H is
assumed to be perfectly known (estimated) at the receiver.
In addition, the fadings hij are assumed to be complex
circularly symmetric Gaussian random variables of zero-
mean and unit variance.

As linear Space-Time Block Codes (STBCs) are con-
cerned within this work, the used STBC encodes  complex
information symbols represented by the complex-valued
symbols vector s = [s1, ..., s]

t and the codeword matrix
admits a Linear Dispersion (LD) decomposition form
according to:

X =

X

i=1

(<(si)A2i�1 + =(si)A2i) (2)

where <(si) and =(si) correspond respectively to the real
and imaginary parts of the  complex information symbols
and matrices Al, l = 1, ..., 2 are fixed nt ⇥ T complex
linearly independent matrices defining the code, known as
LD or weight matrices. The rate of such codes is equal to

T complex symbols per channel realization. When full rate
codes are used,  = ntT . Moreover, we consider in this
work 2q�QAM constellations with q bits per symbol and
for which the real and imaginary parts of the information
symbols belong to a PAM modulation taking values in the
set [�(q � 1), ..., (q � 1)]. In this work we are interested in
the decoding of linear STBCs using Maximum Likelihood

criterion. Accordingly, the receiver seeks an estimate X̂ of
the transmitted codeword X by solving the minimization
problem given by:

X̂ = argmin
X2C

k Y �HX k2 (3)

ML decoding remains thus to find the codeword matrix that
minimizes the squared norm m(X) =k Y �HX k2. The
complexity of ML decoding is determined by the minimum
number of values of m(X) that needs to be computed to
find the ML solution. It is upper bounded by 2qTnt , the
complexity of the exhaustive search. One way to avoid
the high complexity of the exhaustive search consists in
applying sequential decoders, such as the Sphere Decoder
(SD) [1]. We are interested in this work in linear STBCs
that admit low-complexity ML decoding using, without loss
of generality, the sphere decoder.

Constructions of such codes date back to the Complex
Orthogonal designs with the Alamouti code [2] and subse-
quent codes proposed in [3]. This family of codes offers
the least ML decoding complexity that is linear as function
of the constellation size. Their main drawback is their low
maximum rate. Quasi-Orthogonal codes with full diversity
and larger rates than the orthogonal designs have been
later on proposed in [4]. Recently, 3 main families of ML-
decodable codes with low-complexity have been discovered:
multi-group decodable [5], fast decodable [6, 7], and fast
group decodable codes [8]. A sub-class of fast decodable
codes, termed Block-orthogonal codes has been proposed
in [9]. Information symbols in such families of codes can
be grouped into different partitions and decoded separately
resulting in low-decoding complexity.

The construction and study of the above mentioned
families of codes has been performed based on the so-called
Hurwitz-Radon Theory (HR) to derive sufficient design
criteria and conditions on the mutual orthogonality between
the weight matrices defining the linear code. This theory
has been later on used, in recent works, to define a second
Quadratic Form approach in [10]. The sphere decoding
complexity of linear STBCs is captured, under this approach,
by a Hurwitz Radon Quadratic Form (HRQF) matrix. It is
shown in [10] that the Quadratic Form approach allows to
determine the SD complexity of the codes that belong to
the families of multi-group decodable, fast decodable and
fast-group decodable. Nevertheless, as highlighted in [10], it
does not capture the class of block-orthogonal codes. In this
work, we revisit the design of the weight matrices for STBCs
to admit low-complexity ML decoding. Our contributions
are as follows:

• We propose novel sufficient design criteria for
reduced-complexity ML decodable linear STBCs
considering an arbitrary number of antennas and an
arbitrary coding rate.

• We apply the derived criteria to the families of multi-
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group decodable, fast decodable and fast group
decodable codes showing that the SD complexity
depends only on the weight matrices and their
ordering and not on the channel gains.

• We provide analytical proofs explaining why the
HRQF-based approach does not allow to capture
exactly the SD complexity of all classes of STBCs
and show that our criteria capture the case of Block-
Orthogonal codes.

Examples, explanations and proofs, which have been om-
mited here due to space limitations, are provided in an
expanded version of this paper in [11].

The remaining of this work is organized as follows: in
section II we introduce the system model and review the
formal definitions of the main classes of low-complexity ML
decoding codes. In section III, we derive novel sufficient
design criteria for SD of STBCs, apply them to the main 3
families of codes and show analytically the suboptimality of
the sufficient design conditions existing in literature based
on HR theory. Results of this work are summarized in a
concluding section.

Notations: In this work we use the following no-
tations: boldface letters are used for column vectors and
capital boldface letters for matrices. Superscripts t

,

H and ⇤

denote transposition, Hermitian transposition, and complex
conjugation, respectively. Z and C denote respectively the
ring of rational integers and the field of complex numbers.
i is the complex number such that i2 = �1. In addition,
In denotes the n ⇥ n identity matrix. Furthermore, for a
complex number x, we define the (̃.) operator from C to
R2 as x̃ = [<(x),=(x)]t where <(.) and =(.) denote real
and imaginary parts. This operator can also be extended
to a complex vector x = [x1, ..., xn]

t 2 Cn according to:
x̃ = [<(x1),=(x1), ...,<(xn),=(xn)]. Also, we define the

operator (̌.) from C to R2⇥2 as: x̌ 4
=



<(x) �=(x)
=(x) <(x)

�

.

The operator (̌.) can be in a similar way extended to n⇥ n

matrices by applying it to all the entries of the matrix
which results in a 2n ⇥ 2n real-valued matrix. We define
also the vec(.) operator that stacks the m columns of an
n⇥m complex-valued matrix into an mn complex column
vector. The k . k operator denotes the Euclidean norm of
a vector. We define also, for a complex number x 2 C
such that x = <(x) + i=(x) the trace form such that
Tr(x) = TrQ(i)/Q(x) = 2<(x).

II. SYSTEM MODEL, SD COMPLEXITY AND MAIN
CLASSES OF LOW-COMPLEXITY ML DECODING CODES

A. ML decoding problem

ML decoding using the Sphere Decoder exploits the
triangular structure of the ML metric. In order to obtain this
triangular structure, the complex-valued system in Eq.(1) is
transformed into a real-valued one using the vectorization
operator vec(.) and the complex-to-real transformations (̃.)
and (̌.). We obtain accordingly:

ṽec (Y) = Heq s̃+ ṽec (Z) (4)

where Heq 2 R2nrT⇥2 is given by: Heq =
�

IT ⌦ Ȟ
�

G
and its column vectors are given by heq

i , i =, ..., 2. The real-
valued matrix G 2 R2ntT⇥2, termed a generator matrix of
the linear code satisfies ṽec(X) = Gs̃ and can be written
as function of the weight matrices as:

G = [ṽec (A1) |ṽec (A2) |...|ṽec (A2)] (5)

Given that the ordering of the weight matrices in the LD
form corresponds to the order of the information symbols
as <(s1),=(s1), ...,<(s2),=(s2) which corresponds to
the considered order in the complex-to-real transformation
using the operator (̃.), any change of the ordering of the
information symbols results in a similar modification in the
ordering of the weight matrices. The obtained real-valued
system can then be written in the form:

y = Heq s̃+ z (6)

Using this equivalent system, the ML decoding metric is
equivalently written by:

m(s̃) =k y �Heq s̃ k2=k Qty �Rs̃ k2 (7)

where Q 2 R2nrT⇥2 is orthogonal and R 2 R2⇥2

is an upper triangular matrix obtained both from the QR
decomposition of the equivalent channel matrix Heq = QR.
Using Gram-Schmidt orthogonalization, matrices Q and R
are given by: Q = [q1|q2|...|q2] where qi, i = 1, ..., 2
are column vectors and:

R =

2

664

k r1 k < q1,h
eq
2 > · · · < q1,h

eq
2 >

0 k r2 k · · · < q2,h
eq
2 >

...
...

. . . · · ·
0 0 · · · k r2 k

3

775

where r1 = heq
1 ,q1 = r1

kr1k and for i = 2, ..., 2,ri =

heq
i �

Pi�1
j=1 < qeq

j ,heq
i > qj , qi =

ri
krik .

When the Sphere Decoder is used to solve this mini-
mization problem, its complexity can be alleviated thanks
to zero entries in the matrix R, that depend on the used
code and the ordering of the real and imaginary parts of
the symbols in the vector s̃, and accordingly the ordering of
the weight matrices in the generator matrix G. In literature,
we distinguish 3 main classifications of codes using which
the matrix R has an interesting form enabling reduced-
complexity ML decoding: Fast decodable codes, Multi-
group decodable codes and Fast group decodable codes. By
structure, it is meant the locations of the zero entries Rij . The
construction of such codes and determination of the structure
of the matrix R for these classes is, commonly in literature,
determined using a mutual orthogonality property of the
weight matrices based on which two main approaches are
proposed in literature: Hurwitz-Radon theory (HR) approach
and a Quadratic Form (HRQF) approach. We detail in the
following subsections these two approaches and summarize
the main results. We provide for convenience the definition
of a partition as follows.

Definition 1 (A set partition). We call a parti-
tion {a1, ..., an} into g non-empty subsets �1, ...,�g

with cardinalities K1, ...,Kg an ordered partition if
{a1, ..., aK1} 2 �1, {aK1+1, ..., aK1+K2} 2 �2, so on until
n

a

Pg�1
i=1 Ki+1, ..., a

Pg
i=1 Ki

o

2 �g .

B. Hurwitz-Radon theory-based approach

The HR theory-based approach uses in its essence the
mutual orthogonality of weight matrices [12]. The main
result is stated in the following theorem [7].

Theorem 1. For an STBC with  independent complex
information symbols and 2 linearly independent matrices
Al, l = 1, ..., 2, if, for any i and j, i 6= j, 1  i 6= j  2,
AiAH

j + AjAH
i = 0nt , then the i

th and j

th columns of
the equivalent channel matrix Heq are orthogonal.



This property has been used to define and construct
particular classes of codes defined below.

Definition 2 (Multi-group decodable codes). An STBC is
said to be g�group decodable if there exists a partition of
{1, 2, ..., 2} into g non-empty subsets �1,�2, ...,�g such
that AlAH

m +AmAH
l = 0, whenever l 2 �i and m 2 �j

and i 6= j. The corresponding R matrix has the following
form:

R =

2

6

6

4

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...
0 0 · · · �g

3

7

7

5

(8)

where �i, i = 1, ..., g is a square upper triangular matrix.

Definition 3 (Fast decodable codes). An STBC is said to
be fast Sphere Decodable code if there exists a partition
of {1, 2, ..., L} where L  2 into g non-empty subsets
�1,�2, ...,�g such that < qi,h

eq
j >= 0, (i < j), whenever

i 2 �p and j 2 �q and p 6= q. The R matrix corresponding
to fast decodable codes has the form:

R =



� B1

0 B2

�

(9)

where � is an L ⇥ L block diagonal, upper triangular
matrix, B1 is a rectangular matrix and B2 is a square
upper triangular matrix.

Definition 4 (Fast-group decodable codes). An STBC with
weight matrices Al, l = 1, ..., 2 is said to be fast group
decodable if it satisfies the following conditions:

• There exists a partition of {1, ..., 2} into g

non-empty subsets �1, ...,�g such that AlAH
m +

AmAH
l = 0nt for l 2 �i , m 2 �j and i 6= j.

• In any partition �i, < qil1
,heq

il2
>= 0 (l1 =

1, 2, ..., Li�1 and l2 = l1+1, ..., Li) and Li  |�i|
where i = 1, 2, ..., g.

The corresponding R matrix has the form:

R =

2

6

6

4

R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rg

3

7

7

5

(10)

where at least one Ri, i = 1, ..., g has the fast-decodability
form.

In addition to these families of codes, recently, a partic-
ular sub-class of fast decodable codes has been proposed,
termed Block-Orthogonal codes. Several known codes in
literature belong to this family of codes, such as the BHV [6]
code, Srinath-Rajan code [7] and codes from Cyclic Division
algebras [13]. The formal definition of the sufficient design
criteria for Block-Orthogonal codes were first given in [9]
for codes with parameters (�, k, 1) and recently generalized
in [14, 15] for codes with parameters (�, k, �) for arbitrary
sizes of sub-blocks considering the matrices Ri, i = 1, ...,�
having the same size of sub-blocks. These sufficient design
conditions are summarized in the following lemma [14, 15].

Lemma 2. Let the R matrix of an STBC with weight matri-

ces {A1, ...,AL} and {B1, ...,Bl} be R =



R1 E
0 R2

�

,

where R1 is an L⇥ L upper triangular block-orthogonal
matrix with parameters (�� 1, k, �), E is an L⇥ l matrix
and R2 is an l⇥l upper triangular matrix. The STBC will be
block orthogonal with parameters (�, k, �) if the following

conditions are satisfied:

• The matrices {B1, ...,Bl} are k�group decodable
with � variables in each group.

• The matrices {A1, ...,AL} when used as weight
matrices for an STBC yield an R matrix hav-
ing a block orthogonal structure with parameters
(� � 1, k, �). When � = 2, then L = l and the
matrices {A1, ...,AL} are k�group decodable with
variables � in each group.

• The set of matrices {A1, ...,AL,B1, ...,Bl} are
such that the matrix R obtained is of full rank.

• The matrix EtE is a block diagonal matrix with k

blocks of size � ⇥ �.

R matrix for Block Orthogonal codes has the form:

R =

2

6

6

4

R1 B12 · · · B1�

0 R2 · · · B2�
...

...
. . .

...
0 0 · · · R�

3

7

7

5

(11)

where each matrix Ri, i = 1, ...,� is full rank, block
diagonal, upper triangular with k blocks Ui1, ...,Uik each
of size � ⇥ � and Bij , i = 1, ...,�, j = i + 1, ...,� are
non-zero matrices.

C. Quadratic Form-based approach

In theorem 1, it is shown that the Hurwitz-Radon Theory
capturing the orthogonality between two weight matrices is
sufficient to obtain orthogonality of corresponding columns
of the equivalent channel matrix. This property was later
on used in [10] to develop a Quadratic Form termed
Hurwitz Radon Quadratic Form (HRQF). This quadratic
form has been considered before in literature [16] to
determine whether Quaternion algebras or Biquaternion
algebras are division algebras. In [10], this quadratic form
is further exploited to define the zero structure of the
matrix R by associating to the HRQF a matrix U such
that Uij =k AiAH

j +AjAH
i k2 and Uij = 0 if and only if

AiAH
j +AjAH

i = 0nt . This form has been used in [10]
to determine sufficient conditions for an STBC to admit
multi-group, fast and fast-group decodability as summarized
in the following lemmas [10].

Lemma 3. Let an STBC with  independent complex
symbols, 2 weight matrices and HRQF matrix U. If there
exists an ordered partition of {1, 2, ..., 2} into g non-empty
subsets �1, ...,�g such that Uij = 0 whenever i 2 �p

and j 2 �q and p 6= q, then the code is g�group sphere
decodable.

Lemma 4. Let an STBC with  independent complex
symbols, 2 weight matrices and HRQF matrix U. If there
exists a partition of {1, 2, ..., L} where L  2 into g non-
empty subsets �1, ...,�g such that Uij = 0 whenever i 2 �p

and j 2 �q and p 6= q, then the code is fast decodable.

Lemma 5. Let an STBC with  independent complex
symbols, 2 weight matrices and HRQF matrix U. If there
exists a partition of {1, 2, ..., L} where L  2 into g non-
empty subsets �1, ...,�g with cardinalities 1, ...,g such
that Uij = 0 whenever i 2 �p and j 2 �q and p 6= q, and
if any group �i admits fast decodability, then the code is
fast group decodable.

These lemmas state that the HRQF matrix totally
determines the fast sphere decodability of STBCs and



provide sufficient conditions for an STBC to be multi-group,
fast or fast-group decodable. Nevertheless, as highlighted
in [10], in some cases, for instance in the case of Block
orthogonal codes, the HRQF approach does not capture the
zero structure of the R matrix. In such cases, it is possible
to have entries Rij 6= 0 even if the corresponding weight
matrices Ai and Aj are HR orthogonal which is equivalent
to have the corresponding entry in the HRQF matrix Uij = 0.
Authors in [10] do not provide an explanation for having
such configurations.

III. SUFFICIENT DESIGN CRITERIA FOR
LOW-COMPLEXITY ML DECODING OF STBCS

In this work, we first aim to provide sufficient conditions
on the structure of the weight matrices for an STBC that
fully determine the SD ML-decoding complexity of any
STBC. These design criteria are stated in theorem 6.

Theorem 6. For an STBC with k independent complex
symbols and 2k weight matrices Al for l = 1, ..., 2, if for
any i and j, i 6= j, 1  i, j  2 for all l = 1, ..., T one or

both of the following conditions is satisfied:

Tr
⇣
a
(i)
ql

⇣
a
(j)
pl

⌘⇤
+ a

(i)
pl

⇣
a
(j)
ql

⌘⇤⌘
= 0 , 8q = 1, ..., nt, p = q, q+1, ..., nt

Tr
⇣
i
h
a
(i)
ql

⇣
a
(j)
pl

⌘⇤
� a

(i)
pl

⇣
a
(j)
ql

⌘⇤i⌘
= 0 , 8q = 1, ..., nt, p = q+1, ..., nt

where a

(i)
ql (resp. a(j)pl ) is the entry of the matrix Ai (resp.

Aj) at row q and column l (resp. at row p and column
l), then the i

th and j

th columns of the equivalent channel
matrix Heq are orthogonal. Both conditions hold at the

same time if and only if a

(i)
ql = 0 or a

(j)
pl = 0.

Proof:
We know from the expression of the equivalent chan-

nel matrix that: < heq
i ,heq

j >=
PT

l=1 ã
t
ilȞ

tȞãjl =
PT

l=1 ã
t
ilMãjl where ail,ajl, l = 1, ..., T are the l

th

columns of respectively the weight matrix Ai and Aj . Using
the operator (̃.), we show that the matrix M is symmetric
and satistifies the following properties:

M2i�1,2i�1 = M2i,2i,M2i�1,2i = 0 , 8i = 1, ..., nt

M2i�1,2j�1 = M2i,2j ,M2i,2j�1 = �M2i�1,2j , 81  i < j  nt

Let Tl = ãtilMãjl. By deriving the computation and
using the properties of the matrix M, we show that Tl =
Al +Bl where:

Al =
1
2

ntX

q=1

M2q�1,2q�1Tr
⇣
a(i)
ql

⇣
a(j)
ql

⌘⇤⌘

+
1
2

ntX

q=1

ntX

p=q+1

M2q�1,2p�1Tr
⇣
a(i)
ql

⇣
a(j)
pl

⌘⇤
+ a(i)

pl

⇣
a(j)
ql

⌘⇤⌘

Bl =
1
2

ntX

q=1

ntX

p=q+1

M2q�1,2pTr
⇣
i
h
a(i)
ql

⇣
a(j)
pl

⌘⇤
� a(i)

pl

⇣
a(j)
ql

⌘⇤i⌘

Notice that the terms Tr
⇣

a

(i)
ql

⇣

a

(j)
pl

⌘⇤⌘
in Al and

Tr
⇣

ia

(i)
ql

⇣

a

(j)
pl

⌘⇤⌘
in Bl are equal to zeros at the same

time if and only if either a(i)ql = 0 or a(j)pl . The proof follows
given < heq

i ,heq
j >=

PT
l=1 Tl. Details of the proof are

ommited for space limitations and provided in the long
version of this paper [11].

Theorem 6 states a component-wise mutual orthogonality
criterion involving the entries of weight matrices correspond-
ing to column vectors of the equivalent channel matrix. We

provide in the following lemma an analytical proof that
shows the suboptimality of the HR theory and HRQF-based
approaches and explains why the conditions proposed in
these approaches do not capture all the families of low-
complexity ML decoding STBCs in contrast to our derived
sufficient design conditions in Theorem 6.

Lemma 7. Consider an STBC with  independent complex
information symbols and 2 weight matrices Al, l =
1, ..., 2. If for any i and j, 1  i, j  2k the matrices
Ai and Aj are mutually orthogonal, i.e. satisfy AiAH

j +

AjAH
i = 0nt , then 8p = 1, ..., nt,

nt
X

l=1

Tr
⇣

a

(i)
pl

⇣

a

(j)
pl

⌘⇤⌘
=

0.
Proof:

We know from the properties of the (̌.) operator that A =
BC , Ǎ = B̌Č. Using this property, we have AiAH

j +

AjAH
i = 0nt , Ǎi

�

Ǎj

�t
+ Ǎj

�

Ǎi

�t
= O2nt . This

means that the matrix V = Ǎi

�

Ǎj

�t
is skew-symmetric,

thus its diagonal elements are zeros. Using the complex-
to-real transformation, it is easy to show that the diagonal
entries are given, 8p = 1, ..., nt by:

V2p�1,2p�1 = V2p,2p =
ntX

l=1

⇣
<
⇣
a(i)
pl

⌘
<
⇣
a(j)
pl

⌘
+ =

⇣
a(i)
pl

⌘
=
⇣
a(j)
pl

⌘⌘

=
ntX

l=1

⇣
Tr

⇣
a(i)
pl

⇣
a(j)
pl

⌘⇤⌘⌘

Having diagonal entries of V equal to 0 ends the proof.

From Lemma 7, we can easily see that the sufficient
condition for having orthogonality between two columns
in the equivalent channel matrix as proposed using the HR
mutual orthogonality and HRQF approach captures only the
summation of the trace forms of the components a(i)pl

⇣

a

(j)
pl

⌘⇤

and imposes that this summation be zero for all p = 1, ..., nt.
However, as proved in Theorem 6, in order to have the i

th

and j

th columns of Heq orthogonal, it is sufficient to have
the individual trace forms for a(i)pl

⇣

a

(j)
pl

⌘⇤
or ia(i)pl

⇣

a

(j)
pl

⌘⇤

equal to 0 and not the summation of the trace forms be
0. Of course when the individual trace forms are null, the
summation is also equal to 0, however, if the summation
is equal to 0, the individual trace forms can be different of
0. In such cases, the HR mutual orthogonality is satisfied
and the entry Uij of the HRQF matrix is equal to 0 without
having orthogonality of columns i and j of the equivalent
channel matrix and thus the corresponding entry in the R
matrix Rij 6= 0.

Having derived the sufficient design criteria for having
orthogonality of columns in the equivalent channel matrix,
we move now to the application of these conditions and show
that these criteria are enough to determine the SD complexity
of an STBC, prove that the SD complexity depends only
on the weight matrices and their ordering and not on the
channel matrix or the number of receive antennas. We start
with the class of multi-group decodable codes.

Lemma 8. Let an STBC with  independent complex
symbols and 2 weight matrices. If there exists an ordered
partition of {1, 2, ..., 2} into g non-empty subsets �1, ...,�g

such that for all l = 1, ..., T at least one of the following
conditions is satisfied:
Tr

⇣
a
(i)
ql

⇣
a
(j)
pl

⌘⇤
+ a

(i)
pl

⇣
a
(j)
ql

⌘⇤⌘
= 0 , 8q = 1, ..., nt, p = q, q+1, ..., nt

Tr
⇣
i
h
a
(i)
ql

⇣
a
(j)
pl

⌘⇤
� a

(i)
pl

⇣
a
(j)
ql

⌘⇤i⌘
= 0 , 8q = 1, ..., nt, p = q+1, ..., nt



whenever i 2 �m and j 2 �n and m 6= n, then the code
is g�group sphere decodable.

Lemma 9. Let an STBC with  independent complex
symbols and 2 weight matrices. If there exists a partition
of {1, 2, ..., L} where L  2 into g non-empty subsets
�1,�2, ...,�g such that for all l = 1, ..., T at least one of
the following conditions is satisfied:
Tr

⇣
a
(i)
ql

⇣
a
(j)
pl

⌘⇤
+ a

(i)
pl

⇣
a
(j)
ql

⌘⇤⌘
= 0 , 8q = 1, ..., nt, p = q, q+1, ..., nt

Tr
⇣
i
h
a
(i)
ql

⇣
a
(j)
pl

⌘⇤
� a

(i)
pl

⇣
a
(j)
ql

⌘⇤i⌘
= 0 , 8q = 1, ..., nt, p = q+1, ..., nt

whenever i 2 �m and j 2 �n and m 6= n, then the code
is fast decodable.

Lemma 10. Let an STBC with  independent complex
symbols and 2 weight matrices. If there exists a partition
of {1, 2, ..., L} where L  2 into g non-empty subsets
�1,�2, ...,�g with cardinalities 1, ...,g such that for all
l = 1, ..., T at least one of the following conditions holds:
Tr

⇣
a
(i)
ql

⇣
a
(j)
pl

⌘⇤
+ a

(i)
pl

⇣
a
(j)
ql

⌘⇤⌘
= 0 , 8q = 1, ..., nt, p = q, q+1, ..., nt

Tr
⇣
i
h
a
(i)
ql

⇣
a
(j)
pl

⌘⇤
� a

(i)
pl

⇣
a
(j)
ql

⌘⇤i⌘
= 0 , 8q = 1, ..., nt, p = q+1, ..., nt

whenever i 2 �m and j 2 �n and m 6= n, and if any group
�i admits fast decodability, then the code is fast group
decodable.

The last class of codes studied in this work is the Block
orthogonal family. We provide in the following sufficient
design criteria for STBCs to be (�, k, �)-Block Orthogonal.

Lemma 11. Let the R matrix of an STBC with weight matri-

ces {A1, ...,AL} and {B1, ...,Bl} be R =



R1 E
0 R2

�

,

where R1 is an L⇥ L upper triangular block-orthogonal
matrix with parameters (�� 1, k, �), E is an L⇥ l matrix
and R2 is an l⇥l upper triangular matrix. The STBC will be
block orthogonal with parameters (�, k, �) if the following
conditions are satisfied:

• If there exists an ordered partition of the set of
matrices {B1, ...,Bl} into k non-empty subsets
S1, ..., Sk each of cardinality � such that for all
l = 1, ..., T at least one of the following conditions
is satisfied:

Tr

✓
a
(i)
ql

✓
a
(j)
pl

◆⇤
+ a

(i)
pl

✓
a
(j)
ql

◆⇤◆
= 0 , 8q = 1, ..., nt, p = q, q+1, ..., nt

Tr

✓
i


a
(i)
ql

✓
a
(j)
pl

◆⇤
� a

(i)
pl

✓
a
(j)
ql

◆⇤�◆
= 0 , 8q = 1, ..., nt, p = q+1, ..., nt

whenever i 2 Sm and j 2 Sn and m 6= n.

• The matrices {A1, ...,AL} when used as weight
matrices for an STBC yield an R having a block
orthogonal structure with parameters (�� 1, k, �).
When � = 2, then L = l and the matrices
{A1, ...,AL} are k�group decodable with vari-
ables � in each group.

• The set of matrices {A1, ...,AL,B1, ...,Bl} are
such that the matrix R obtained is of full rank.

• The matrix EtE is a block diagonal matrix with k

blocks of size � ⇥ �.

Detailed proofs and examples of the provided lemmas
can be found in the long version of this paper.

IV. CONCLUSION

This work is dedicated to the design of STBCs that admit
low-complexity ML decoding using sequential decoders. We

proposed novel sufficient design criteria for weight matrices
defining the Linear Dispersion code for an arbitrary number
of antennas and any coding rate. Our criteria explain why
the existing approaches fail in determining the zero structure
for some families of codes, for instance Block Orthogonal
codes and show that decoding complexity of STBCs depends
only on the weight matrices and their ordering and not on
the channel matrix.
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