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Abstract—We focus in this work on optimal maximum a poste-
riori (MAP) decoding for lattice-based physical-layer network
coding operating in Gaussian multiple access relay channels.
We consider a general lattice design that makes our results
hold for any lattice coding schemes of any dimensions including
the Compute-and-Forward framework. By examining the MAP
decoding rule, we first derive an analytical bound on the
codeword error probability taking into consideration decoding
errors at the relay. Besides, we derive a novel MAP decoding
metric using which we develop a novel, practical and easy-to-
implement MAP decoding algorithm based on lattice sphere
decoding. We further provide numerical results that demonstrate
the effectiveness of our algorithm and show its outperformance
over existing suboptimal decoders.

Index Terms—Physical-layer network coding, lattice codes,
maximum a posteriori decoding, sphere decoder.

I. INTRODUCTION

Physical-layer network coding (PNC) is a new coding per-
spective that has fundamentally changed the management

of interference in multi-user communication networks. Tradi-
tionally considered as a nuisance to be avoided, interference
resulting from the superposition of data at intermediate relay
nodes is exploited to decode combinations of original signals
[1] and result in higher end-to-end transmission rates.

We are interested in this work in a very promising category
of linear PNC joint to lattice-based channel coding. The
first framework that falls into this class is the Compute-and-
Forward (CF) scheme proposed by Nazer and Gastpar in [2].
Based on nested lattice coding structures, this new strategy
allows to take advantage of the interference provided by the
wireless medium to decode a noiseless integer linear combina-
tion of original codewords with higher rates. Channel decoding
at intermediate relays is based on a standard minimum distance
decoding. Under this assumption, a union bound estimate of
the error probability at the relays was derived in [3], and we
have addressed in [4] and [5] the end-to-end error performance
evaluation in the multi-source relay channel and the two-way
relay channel respectively. Later on, independently in [6] and
[7], the Maximum Likelihood (ML) decoder was investigated.
An algebraic extension of the CF using lattice partitions related
to finitely generated modules over principal ideal domains was
proposed by Feng et al. in [3]. For this scheme, minimum
distance decoding is also considered. Wilson et al. investigated
in [8] a lattice-based computation in the Gaussian multiple
access channel based on the minimum angle decoder.

A main common limitation of the above mentioned schemes
is the use of suboptimal decoders at the relay’s level. The
worthiness of using the maximum a posteriori (MAP) decoder,

which is the optimal decoding criterion for this scheme, its
gain over the existing suboptimal decoders as well as its
implementation in practice are still not solved. Authors in [8]
expect that the MAP decoder offers better performance than
the existing decoders. However, no deeper investigations of
the MAP’s performance have been provided so far to check
whether it is worth to apply this decoder or not. The novelty
of our work is the analysis of the MAP decoder for lattice-
based network coding strategies operating in the Gaussian
multiple access relay channel. We consider a general lattice
design that makes our results applicable to any lattice encoding
schemes including the above cited works. After describing the
considered lattice design and analyzing the MAP decoding
rule in section II, our contributions are organized as follows:

• In section III, we derive a union bound estimate on the
codeword error probability taking into account decoding
errors at the relay from which we propose a lattice design
criterion.

• In section IV, we derive a novel MAP decoding metric
from which we develop a new and easy-to-implement
decoding algorithm based on spherical lattice decoding.

• In section V, we provide numerical results that show that
our proposed MAP algorithm outperforms the existing
minimum distance decoding while maintaining the same
complexity order.

Concluding remarks and future investigations are summarized
in section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Lattice Design
An n−dimensional real valued lattice Λ is a discrete addi-

tive subgroup of Rn given by Λ = {x = Ms, s ∈ Zn}, where
the matrix M refers to the generator matrix of Λ and is as-
sumed to be full rank. A main property of a lattice structure is
linearity, meaning that for any x,y ∈ Λ, a, b ∈ Z, ax+by ∈ Λ.

We consider in our analysis a general lattice design given by
the pair (Λ,R) where Λ ⊂ Rn is a lattice and R is a compact
convex set of Rn containing the zero vector. R defines the
shaping region of the lattice design and acts to satisfy the
transmission power constraint. For this lattice design, we
define the codebook C = {Λ ∩R}, the set of points obtained
from the intersection of Λ with the shaping region R. The
considered design admits most of the lattice coding schemes
proposed in literature including the nested lattice scheme of
Nazer and Gastpar [2], the algebraic framework of Feng et
al. in [3] and the lattice scheme considered by Wilson et
al. in [8]. These structures mainly differ in the choice of the
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shaping region. For example, in the case of the CF scheme,
R is designed using a shaping lattice ΛC termed the coarse
lattice such that ΛC ⊂ Λ. The generalization of our design
makes our results straightforwardly applicable to all of the
above mentioned schemes.

B. Computation in Gaussian Multiple Access Relay Channel
Consider a real n−dimensional lattice design (Λ,R) and

let M denote a generator matrix of the lattice Λ. The system
model we are interested in within this work is the real-
valued Gaussian multiple access relay channel composed of
K source nodes that transmit simultaneously their data to
a common relay R. In a first step, sources encode their
information messages onto lattice codewords xi drawn uni-
formally and independently from the same codebook C using
a same lattice design (Λ,R). Original codewords meet then
the power constraint defined by the shaping region and satisfy:
1
nE

{
∥ xi ∥2

}
≤ P, P > 0, i = 1, ...,K. The channel output

is given by:

y =
K∑

i=1

xi + z (1)

where z ∈ Rn stands for the AWGN generated i.i.d according
to a normal distribution N

(
0,σ2In

)
. We define the signal to

noise ratio (SNR) as ρ = P
σ2 .

From this observed vector, the relay attempts to decode a
noiseless sum of the original codewords: λ =

∑K
i=1 xi which,

given the linear structure of the lattice, will also be a codeword
from Λ. This decoding objective can be considered as the first
step of the Compute-and-Forward relaying strategy (since for
this scheme, the ultimate goal of the relay is to recover the
noiseless sum modulo the coarse lattice), or a Denoise-and-
Forward technique [9].

The relay is equipped with a decoder D that generates an
estimate λ̂ of the desired sum. The codeword error probability
at the relay corresponds to the decoding errors on the sum
codewords. It is then given by Perror = Pr

(
λ̂ ̸= λ

)
.

(a) Histogram for K=2. (b) Histogram for K=5.

Fig. 1. Histogram of the codebook induced by the sum of codewords.

Let Λs denote the sum codebook which is the set of all
sum codewords λ. Given the linear structure of the lattice
Λ, Λs is a subset of Λ restricted to a sum shaping region
Rs such that all sum codewords λs fall within this region.
Given that the set Λs is obtained through a superposition of the

originally transmitted codewords, its distribution is no longer
uniform. This observation was first highlighted in [8]. As a
proof of concept, we illustrate in Fig.1 two examples of the
statistical distribution of a sum codebook resulting from the
superposition of 2-dimensional lattice codewords for the case
of K = 2 and K = 5 considering a lattice Λ of a generator

matrix M =

[
2 3
3 −1

]
.

Under this non-uniform distribution property, the optimal
decoder at the relay that minimizes the probability of codeword
error Perror, is the maximum a posteriori decoder given
according to the following

λ̂map = argmax
λ∈Λs

p (λ|y) = argmax
λ∈Λs

p(λ)p (y|λ)

= argmax
λ∈Λs

{
p(λ)

1

(σ
√
2π)n

exp

(
−∥ y − λ ∥2

2σ2

)}

= argmin
λ∈Λs

{
− ln (p(λ)) +

∥ y − λ ∥2

2σ2

}
(2)

III. A BOUND ON THE ERROR PROBABILITY UNDER
OPTIMAL MAP DECODING

Using the optimal MAP decoder, we derive in the follow-
ing theorem a union bound estimate on the sum codeword
decoding error probability.

Theorem: III.1 Consider a lattice design (Λ,R), and a relay
node computing a noiseless sum of K source codewords in
a real-valued Gaussian multiple access channel using the
optimal maximum a posteriori decoder. Then the union bound
estimate of the probability of decoding error is

Perror ≤
1

2

∑

λ∈Λs

∑

λ̂∈Λs\λ

p(λ)erfc

(√
A+

B√
A

)
(3)

where A = d2
min
8σ2 , B = 1

4 ln
(

p(λ)

p(λ̂)

)
and dmin denotes the

minimum distance of the coding lattice Λ.

Proof The proof of our theorem is based on the pairwise error
probability defined as the probability that the sum codeword
λ has a larger MAP decoding metric in (2) than λ̂ given that
λ is transmitted. Its expression is formulated as follows

Pr(λ −→ λ̂) = Pr

(
− ln

(
p(λ̂)

)
+

∥ y − λ̂ ∥2

2σ2
< − ln (p(λ)) +

∥ y − λ ∥2

2σ2

)

= Pr

(
ln

(
p(λ)

p(λ̂)

)
+

∥ y − λ̂ ∥2

2σ2
−

∥ y − λ ∥2

2σ2
< 0

)

= Pr

(
2σ2 ln

(
p(λ)

p(λ̂)

)
+ ∥ λ − λ̂ ∥2 +2

〈
λ − λ̂, z

〉
< 0

)

= Pr (G < 0) = Q

(
µG

σG

)

= Q

(
∥ λ − λ̂ ∥

2σ
+

σ

∥ λ − λ̂ ∥
ln

(
p(λ)

p(λ̂)

))

where it is easy to prove that

G = 2σ2 ln

(
p(λ)

p(λ̂)

)
+ ∥ λ− λ̂ ∥2 +2 < λ− λ̂, z >

is a random Gaussian variable of mean µG and variance σ2
G

given by:
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µG =∥ λ− λ̂ ∥2 +2σ2 ln

(
p(λ)

p(λ̂)

)
(4)

σ2
G = 4σ2 ∥ λ− λ̂ ∥2 (5)

Using the union bound, we get,

Perror ≤
∑

λ∈Λs

p(λ)
∑

λ̂∈Λs\λ

Pr(λ −→ λ̂)

≤
∑

λ∈Λs

∑

λ̂∈Λs\λ

p(λ)Q

(
∥ λ− λ̂ ∥

2σ
+

σ

∥ λ− λ̂ ∥
ln

(
p(λ)

p(λ̂)

))

Where Q(.) denotes the Q function. We can therefore,
using the relation Q(x) = 1

2erfc(
x√
2
), write:

Perror ≤
1

2

∑

λ∈Λs

∑

λ̂∈Λs\λ
p(λ)erfc

(
∥ λ − λ̂ ∥

2
√

2σ
+

σ
√

2 ∥ λ − λ̂ ∥
ln

(
p(λ)

p(λ̂)

))

The last step to prove our theorem is based on two facts:
• ∥ λ−λ̂ ∥≥ dmin, for all λ, λ̂ ∈ Λs. This inequality results

from the linearity structure and the geometrical properties
of the lattice Λ.

• The function erfc(x+ α
x ), α ∈ R is a decreasing function

with respect to x [10].
The proof follows then by considering A and B as defined
above.

Given the derived upper bound, we propose a lattice design
criterion as follows.

Proposition III.2 Minimization of the error probability under
MAP decoding requires to select lattice designs (Λ,R) such
that the minimum distance of the lattice Λ is maximized.

Proof The upper bound on the error probability is a strictly
decreasing function of A [10], thus a decreasing function of
the minimum distance of the lattice Λ. Then in order to make
the error probability small, the coding lattice Λ has to have a
large minimum distance dmin.

The construction of such good codes is out of the scope
of this work. Even though, we point out that for lattices built
using Construction A [11] over linear codes, this criterion re-
quires to design linear codes with minimum euclidean weights.

IV. A NOVEL MAP DECODING ALGORITHM

Our objective in the following is to develop a practical
decoding algorithm that allows to reliably find the optimal
MAP estimate of the optimization problem in (2).

A first obvious approach consists in performing an ex-
haustive naive search over the sum codebook Λs. Using this
approach, no assumptions on the sum codebook distribution
is considered. The relay in this case, given the number of
sources and the original codebook C, derives the statistics of
the sum codebook to compute the corresponding values of
p(λ) for all codewords λ ∈ Λs, then, it exhaustively seeks
the codeword which maximizes the decoding metric in (2).
However, this method is not practical for two main reasons:
its high complexity and the requirement of the knowledge of
the instantaneous values of the probability distribution function
for all sum codewords at the relay. In order to overcome these
limitations to build a practical decoding algorithm, we analyze
in the following the distribution of the sum codewords.

A. Discrete Gaussian Distribution of the Sum Codewords
The original codewords are drawn uniformally and inde-

pendently from the uniform codebook C, they are modeled
by uniform random variables of zero-mean (µx = 0) and
variance σ2

x = 1
nE

(
∥ xi ∥2

)
≤ P for i = 1, ...,K. Consider

now the sum codewords λ =
∑K

i=1 xi obtained through the
superposition of the vectors sent by the sources. Given the
uniform distribution of the original codewords, The Central
Limit Theorem states that λ is a random variable of mean
µs = Kµx = 0 and variance σ2

s = Kσ2
x. Particularly,

for increasing number of sources K, the sum codewords
converge to a normal distribution N

(
µs,σ2

s In
)
. In order to

be able to use this result to approximate the vectors λ by
random Gaussian variables, we need in addition to take into
consideration the fact that the sum codewords are discrete and
correspond to lattice points. For this purpose we introduce
the lattice Gaussian distribution. This tool arises in several
problems in coding theory [12] and mathematics [13].

Let fσs(x) denote the Gaussian distribution of variance σ2
s

centered at the zero vector such that for σs > 0 and all x ∈ Rn:

fσs(x) =
1

(√
2πσs

)n e
− ∥x∥

2

2σ2
s (6)

Consider also the Λ−periodic function fσs(Λ) defined by:

fσs(Λ) =
∑

λ∈Λ

fσs(λ) =
1

(√
2πσs

)n
∑

λ∈Λ

e
− ∥λ∥

2

2σ2
s (7)

Then the sum codewords can be modeled by the discrete
Gaussian distributions over Λ centered at the zero vector
according to: p(λ) = fσs (λ)

fσs (Λ) . Illustrated examples in Fig.1
show that the discrete Gaussian distribution fits our settings.
As a proof of concept, we will show by numerical results that
this Gaussian model is well justified in the context of lattice
network coding even for low number of sources K ≥ 2.

B. Equivalent Novel MAP Decoding metric
Considering the Gaussian distribution on the sum code-

words, equation (2) is equivalently written as:

λ̂map = argmin
λ∈Λs

{
ln (fσs (Λ)) + n ln (σs

√
2π) +

1

2σ2
s

∥ λ ∥2 +
1

2σ2
∥ y − λ ∥2

}

The first and second terms in this optimization problem are
independent of the variable λ, they can be disregarded in the
optimization over λ. Then we define a new MAP decoding
metric given by:

λ̂map = argmin
λ∈Λs

{
∥ y − λ ∥2 +β2 ∥ λ ∥2

}
(8)

where β = σ
σs

. Using this new metric, we show in
Proposition.IV.1 that MAP decoding reduces to solve for a
closest vector problem.

Proposition IV.1 The MAP decoding metric in (8) is equiv-
alent to find the closest vector in the lattice Λaug of gen-
erator matrix Maug = [M βM]t ∈ R2n×n to the vector
yaug = [y 0n]

t according to the following metric:

λ̂map = argmin
xaug ∈ Λaug/
xaug = Maugλ

∥ yaug − xaug ∥2 (9)
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Proof The decoding metric in (8) can be written as:

λ̂map = argmin
λ∈Λs

{∥∥∥∥

[
y
0n

]
−

[
λ
βλ

]∥∥∥∥
2
}

= argmin
λ∈Λs

∥ yaug − Iaugλ ∥2 (10)

where Iaug = [In βIn]
t ∈ R2n×n is a full rank matrix. On

the other hand, given that the sum codewords belong to the fine
lattice according to the shaping region Rs, any codeword λ
can be written in the form λ = Mu where u ∈ As ⊂ Zn

and As translates the shaping constraint imposed by Rs

and can be deduced from the shaping boundaries limited
by the transmission power constraint P . Consequently, the
optimization problem in (10) is equivalent to solving

λ̂map = argmin
u∈As/λ=Mu

∥ yaug − IaugMu ∥2

= argmin
u∈As/λ=Mu

∥ yaug −Maugu ∥2 (11)

Maug is a full rank matrix and u is an integer vector, then solv-
ing (11) consists in finding the closest vector xaug = Maugu
to yaug in the n−dimensional lattice Λaug of a generated
matrix Maug. After finding the optimal integer vector uopt

that minimizes the metric in (11), the optimal MAP estimate
is deduced by λ̂map = Muopt.

In practice, the sphere decoder can be used to solve the closest
vector problem. We propose in this work a modified version
of this algorithm to take into account the shaping constraint.

Remark: The MAP decoding metric in (8) involves two
terms each one of them is given by an Euclidean distance.
When the first term is dominant, which is the case when
β2 = σ2

σ2
s

= σ2

Kσ2
x
≪ 1, the MAP decoding rule reduces

to minimum distance decoding which is equivalent to ML
decoding in this case. Given that σ2

x depends on the power
constraint P , we deduce that this case of figure is likely to
happen either at high signal to noise ratio or when Kσ2

x is
sufficiently higher than the noise variance σ2. We expect then
that the MAP decoding and the conventional minimum dis-
tance decoder achieve similar performance at high SNR range.
Adversely, at the low and moderate SNR regime and when
the product Kσ2

x is small, the second term in the decoding
metric applies an incremental constraint that considers the non-
uniform distribution of the sum codewords in Λs which is not
taken into account under the conventional decoder. In this case,
we expect that the MAP decoder outperforms the minimum
distance decoding-based one.

We provide in the following proposition an equivalent formu-
lation of the MAP decoding metric related to perform MMSE-
GDFE preprocessing followed by minimum distance decoding.

Proposition IV.2 [Equivalence between MAP decoding and
MMSE-GDFE preprocessed lattice decoding] The MAP de-
coding metric in (8) is equivalent to MMSE-GDFE prepro-
cessed minimum Euclidean distance decoding according to the
metric:

λ̂map = argmin
λ∈Λs

∥ Fy −Bλ ∥2 (12)

where F ∈ Rn×n and B ∈ Rn×n denote respectively the
forward and backward filters of the MMSE-GDFE prepro-
cessing for the channel y = λ + z given in (1) such that
BtB =

(
1 + β2

)
In and FtB = In.

Proof Let N(λ) denote the metric we aim to minimize in (8),
we have the following:

N(λ) =∥ y − λ ∥2 +β2 ∥ λ ∥2

= yty − 2ytλ+ λtλ+ β2λtλ

=
(
1 + β2

)
λtλ+ yty − 2ytλ

= λtBtBλ+ yty − 2ytFtBλ

= λtBtBλ+ ytFtFy − 2ytFtBλ︸ ︷︷ ︸
∥Fy−Bλ∥2

+yt
(
In − FtF

)
y

︸ ︷︷ ︸
Γ(y)

where F ∈ Rn×n and B ∈ Rn×n are chosen such that:
BtB =

(
1 + β2

)
In and FtB = In. Given that Γ(y) > 0

and independent of λ, minimization of N(λ) is equivalent to
minimize ∥ Fy − Bλ ∥2. The last piece to our proof is to
show that the matrices F and B correspond to the filters of
the MMSE-GDFE preprocessing in the system y = λ + z
of input λ and AWGN z. This proof is ommited for space
limitation.

In order to find the MAP estimate according to the decoding
metric in (12), the receiver, given the channel output, first per-
forms MMSE-GDFE preprocessing, then performs minimum
Euclidean distance decoding to find the nearest point to Fy in
the lattice of generator matrix BM according to the shaping
constraint imposed by the subset Λ.

V. NUMERICAL RESULTS

We provide in this section numerical results obtained
through Monte-Carlo simulations and evaluating the code-
word error rate at the relay for the conventional minimum
distance decoder and the proposed MAP decoding algorithm
implementing a modified sphere decoder. In addition, in order
to validate the Gaussianity law assumption we considered
to derive our MAP decoding metric, we include the naive
exhaustive search to solve (2). We studied in our analysis two
lattice examples as described below.

Example 1: 2-Dimensional lattice (n = 2): for this first
example we choose a 2-dimensional lattice Λ of a generator

matrix M =

[
2 3
3 −1

]
. In addition, we consider a spherical

shaping region given by the power constraint P , and study
the cases of K = 2 and K = 5 which correspond to
the statistical distributions depicted in Fig.1. The shaping
constraint in this case is given by P = σ2

x = 6.5. Given
the number of sources and the power constraint, we calculate
for each case the bounds requirements to be considered in
the decoding process using the sphere decoder. Numerical
results concerning the first case, depicted in Fig.2, show that
our proposed algorithm achieves almost identical performance
as the exhaustive search, which confirms the effectiveness
of our metric as well as the validity of the Gaussianity law
assumption considered to model the sum-codewords even for
the case of low number of sources K. Moreover, plotted curves
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Fig. 2. Error performance for the case n = 2,K = 2, P = 6.5.

show that the MAP decoder outperforms the conventional
minimum distance decoding (Min. dist. decoding). The gain
for this 2-dimensional lattice case is not huge, and is limited
to 0.5dB for a codeword error rate of 10−1. Results for the
case of K = 5 plotted in Fig.3 confirm the previous findings
and show that the performance gap between the MAP and
the Minimum distance decoder is also not high. Common to
these two settings is the high value of Kσ2

x, which joins our
previous analysis.
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Fig. 3. Error performance for n = 2,K = 5, P = 6.5.

Example 2: 4-Dimensional lattice (n = 4): in this second
example we consider the 4-dimensional integer lattice Λ of a
generator matrix the identity I4 together with a cubic shaping
region according to P = 1. The aim of considering this exam-
ple is to analyze the performance of the MAP decoder when
the lattice dimension increases. Simulation results depicted in
Fig.4 show that our proposed MAP algorithm allows to achieve
a gain of 1dB at a codeword error rate of 10−3 over the
minimum distance decoder while keeping a small gap to the
exhaustive search. This case shows the merit of applying the
MAP decoding in settings where the product Kσ2

x is small. In
addition, we notice that the gap between the MAP decoder and
the conventional one is independent of the lattice dimension,
it rather increases in settings involving small Kσ2

x.
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Fig. 4. Error performance for n = 4,K = 2, P = 1.

VI. CONCLUSION

In this work we studied optimal MAP decoding for lattice-
based physical-layer network coding in the Gaussian multi-
ple access relay channel. We proposed an analytical upper
bound on the codeword error probability and developed a
novel decoding algorithm inspired by the sphere decoder.
Our simulation results show the effectiveness of the proposed
algorithm and confirm the merit of applying the MAP criterion
in particular for high dimensional lattices. We explore inn
future works the capacity limits of the optimal MAP decoder.

REFERENCES

[1] S Zhang. Hot topic: Physical-layer network coding. In Proceedings of
ACM Mobicom, pages 358–365, 2006.

[2] B. Nazer and M. Gastpar. Compute-and-forward: Harnessing interfer-
ence with structured codes. In Proceedings of ISIT, pages 772 –776,
July 2008.

[3] C. Feng, D. Silva, and F.R. Kschischang. An algebraic approach to
physical-layer network coding. In Proceedings of ISIT, pages 1017 –
1021, June 2010.

[4] A. Mejri and G. Rekaya. Practical physical layer network coding in
multi-sources relay channels via the compute-and-forward. In Proceed-
ings of WCNC, pages 166–171, April 2013.

[5] A. Mejri and G. Rekaya. Bidirectional relaying via network coding:
Design algorithm and performance evaluation. In Proceedings of ICT,
pages 1–5, May 2013.

[6] A. Mejri, G. Rekaya, and J. C Belfiore. Lattice decoding for the
compute-and-forward protocol. In Proceedings of International Con-
ference on Communications and Networking, pages 1–8, March 2012.

[7] J. C Belfiore. Lattice codes for the compute-and-forward protocol: The
flatness factor. In Proceedings of ITW, pages 1–4, 2011.

[8] M.P. Wilson, K. Narayanan, H.D. Pfister, and A. Sprintson. Joint
physical layer coding and network coding for bidirectional relaying.
IEEE Trans. on IT, 56(11):5641 –5654, November 2010.

[9] P. Popovski and H. Yomo. The anti-packets can increase the achievable
throughput of a wireless multi-hop network. In Proceedings of ICC,
pages 3885–3890, 2006.

[10] F. Behnamfar, F. Alajaji, and T. Linder. Performance analysis of map
decoded space-time orthogonal block codes for non-uniform sources. In
Proceedings of ITW, pages 46–49, March.

[11] U. Erez, S. Litsyn, and R. Zamir. Lattices which are good for (almost)
everything. In Proceedings of ITW, pages 271 – 274, March 2003.

[12] G.D. Forney, M.D. Trott, and S-Y. Chung. Sphere-bound-achieving coset
codes and multilevel coset codes. IEE Trans. on IT, 46(3):820–850,
2000.

[13] W. Banaszczyk. New bounds in some transference theorems in the
geometry of numbers. Math. Ann., 296:625–635, 1993.

[14] B. Nazer and M. Gastpar. Reliable physical layer network coding. IEEE
Trans. on IT, 99(3):438 –460, March 2011.

[15] U. Fincke and M. Pohst. Improved Methods for Calculating Vectors of
Short Length in a Lattice, Including a Complexity Analysis. Mathemat-
ics of Computation, 44(170):463–471, 1985.

2014 21st International Conference on Telecommunications (ICT)

71


