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Abstract—Lattice reduction algorithms, such as the LLL al-
gorithm, have been proposed as preprocessing tools in order
to enhance the performance of suboptimal receivers in MIMO
communications.
In this paper we introduce a new kind of lattice reduction-
aided decoding technique, called augmented lattice reduction,
which recovers the transmitted vector directly from the change of
basis matrix, and therefore doesn’t entail the computation of the
pseudo-inverse of the channel matrix or its QR decomposition.
We prove that augmented lattice reduction attains the maximum
receive diversity order of the channel; simulation results evidence
that it significantly outperforms LLL-SIC detection without
entailing any additional complexity.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems can pro-
vide high data rates and reliability over fading channels. In
order to achieve optimal performance, maximum likelihood
decoders such as the Sphere Decoder may be employed;
however, their complexity grows prohibitively with the number
of antennas and the constellation size, posing a challenge for
practical implementation.
On the other hand, suboptimal receivers such as zero forcing
(ZF) or successive interference cancellation (SIC) do not
preserve the diversity order of the system [8]. Right prepro-
cessing using lattice reduction has been proposed in order
to enhance their performance [16, 3, 15]. In particular, the
classical LLL algorithm for lattice reduction, whose average
complexity is polynomial in the number of antennas1, has
been proven to achieve the optimal receive diversity order
in the spatial multiplexing case [14]. Very recently, it has
also been shown that combined with regularization techniques
such as MMSE-GDFE left preprocessing, lattice reduction-
aided decoding is optimal in terms of diversity-multiplexing
tradeoff [5]. However, the shift between the error probability of
ML detection and LLL-ZF (respectively, LLL-SIC) detection
increases greatly for a large number of antennas [10].
Recently a new lattice reduction-aided decoding technique
combining the right preprocessing stage and the detection
stage in a single step was proposed in [9]. This technique,
called Improved Lattice Reduction, consists in LLL-reducing

1Note that the worst-case number of iterations of the LLL algorithm applied
to the MIMO context is unbounded, as has been proved in [6]. However, the
tail probability of the number of iterations decays exponentially, so that in
many cases high complexity events can be regarded as negligible with respect
to the target error rate (see [5], Theorem 3).

an augmented lattice which is a function of the channel matrix
and of the received signal. An estimate of the transmitted
message can then be recovered directly from the change of
basis matrix. Improved Lattice Reduction is equivalent to LLL-
SIC decoding in terms of performance.
In this paper we present a different kind of augmented lattice
reduction decoding which significantly enhances its perfor-
mance by carefully choosing the augmented lattice parameters.
In the coherent case, MIMO decoding amounts to solving an
instance of the closest vector problem (CVP) in a finite subset
of the lattice generated by the channel matrix2. Following
an idea of Kannan [7], our strategy is to reduce the CVP
to the shortest vector problem (SVP) by embedding the n-
dimensional lattice generated by the channel matrix into an
(n+1)-dimensional lattice. We show that for a suitable choice
of the embedding, the transmitted message can be recovered
directly from the coordinates of the shortest vector of the
augmented lattice.
In general, the LLL algorithm is not guaranteed to solve the
SVP; however, it certainly finds the shortest vector in the
lattice in the particular case where the minimum distance
is exponentially smaller than the other successive minima.
Equivalently, we can say that “the LLL algorithm is an
SVP-oracle when the lattice gap is exponential in the lattice
dimension”. An appropriate choice of the embedding ensures
that this condition is satisfied.
Thanks to this property, we can prove that our method also
achieves the receive diversity of the channel. Numerical simu-
lations evidence that augmented lattice reduction significantly
outperforms LLL-SIC detection without entailing any addi-
tional complexity.

This paper is organized as follows: in Section II we intro-
duce the system model and basic notions concerning lattice
reduction, and summarize the existing lattice reduction-aided
decoding schemes. In Section III we describe augmented lat-
tice reduction decoding, and in Sections IV and V we analyze
its performance and complexity. Finally, the conclusions of
our study are presented in Section VI.

2Actually, LLL-ZF and LLL-SIC suboptimal decoding correspond to two
classical techniques for finding approximate solutions of the CVP, due to
Babai: the rounding algorithm and nearest plane algorithm respectively [1].
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II. PRELIMINARIES

A. System model and notation

We consider a MIMO system with M transmit and N

receive antennas such that M  N using spatial multiplexing.
The complex received signal is given by

yc = Hcxc +wc, (1)

where xc 2 CM , yc, wc 2 CN , Hc 2 MN⇥M (C).
The transmitted vector xc belongs to a finite constellation
S ⇢ Z[i]M ; the entries of the channel matrix Hc are supposed
to be i.i.d. complex Gaussian random variables with zero mean
and variance per real dimension equal to 1

2 , and wc is the
Gaussian noise with i.i.d. entries of zero mean and variance
N0. We consider the coherent case where Hc is known at the
receiver.
Separating the real and imaginary part, the model can be
rewritten as

y = Hx+w, (2)

in terms of the real-valued vectors

y =

✓

<(yc)

=(yc)

◆

2 Rn
, x =

✓

<(xc)

=(xc)

◆

2 Zm

and of the equivalent real channel matrix

H =

✓

<(Hc) �=(Hc)

=(Hc) <(Hc)

◆

2Mn⇥m(R).

Here n = 2N , m = 2M .
The maximum likelihood decoded vector is given by

ˆxML = argmin

x̂c2S
kHcˆxc � yck = argmin

x̂c2S
kHˆx� yk ,

where k·k denotes the Euclidean norm.

B. Lattice reduction

An m-dimensional lattice in Rn is the set of points

L(H) = {Hx | x 2 Zm},

where H 2 Mn⇥m(R). We denote by dH the minimum
distance of the lattice, that is the smallest norm of a nonzero
vector in L(H).
More generally, for all 1  i  m one can define the i-th
successive minimum of the lattice as follows:

�i(H) = inf{r > 0 | 9v1, . . . ,vi linearly independent in
L(H) s.t. kvjk  r 8j  i}

We recall that two matrices H,H0 generate the same lattice if
and only if H0

= HU with U unimodular.
Lattice reduction algorithms allow to find a new basis H0 for
a given lattice L(H) such that the basis vectors are shorter
and nearly orthogonal. Orthogonality can be measured by the
absolute value of the coefficients µi,j in the Gram-Schmidt
orthogonalization of the basis, see the GSO Algorithm 1.

Algorithm 1: GSO (Gram-Schmidt orthogonalization)
h⇤
1  h1

for i = 2, . . . ,m do
for j = 1, . . . , i� 1 do

µi,j  
hhi,h

⇤
j i

kh⇤
jk2

end
h⇤
i  hi �

Pi�1
j=1 µi,jh

⇤
j

end

We recall the following useful property of GSO: the length
of the smallest of the Gram-Schmidt vectors h⇤

i is always less
or equal to the minimum distance dH of the lattice [12]:

dH � a(H) + min

1im
kh⇤

i k (3)

A basis H is said to be LLL-reduced [11] if its Gram-
Schmidt coefficients µi,j and Gram-Schmidt vectors satisfy
the following properties:

1) Size reduction:

|µk,l| <
1

2

, 1  l < k  m,

2) Lovasz condition:
�

�h⇤
k + µk,k�1h

⇤
k�1

�

�

2 � �

�

�h⇤
k�1

�

�

2
, 1 < k  m,

where � 2
�

1
4 , 1

�

(a customary choice is � =

3
4 ).

The LLL algorithm is summarized in Algorithm 2. Given a
full-rank matrix H 2Mn⇥m(R), it computes an LLL-reduced
version Hred = HU, with U 2 Mm⇥m(Z) unimodular,
and outputs the columns {hi} and {ui} of Hred and U
respectively.

Algorithm 2: The LLL algorithm
U = Im
Compute the GSO of H
k  2

while k  m do
RED(k,k-1)
if
�

�h⇤
k + µk,k�1h

⇤
k�1

�

�

2
< �

�

�h⇤
k�1

�

�

2 then
swap hk and hk�1

swap uk and uk�1

update GSO
k  max(k � 1, 2)

end
else

for l = k � 2, . . . , 1 do
RED(k,l)

end
k  k + 1

end
end

We list here some properties of LLL-reduced bases that we
will need in the sequel. First of all, the LLL algorithm finds
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Algorithm 3: Size reduction RED(k,l)
if |µk,l| > 1

2 then
hk  hk � bµk,lehl

uk  uk � bµk,leul

for j = 1, · · · , l � 1 do
µk,j  µk,j � bµk,leµl,j

end
µk,l  µk,l � bµk,le

end

at least one basis vector whose length is not too far from the
minimum distance dH of the lattice. The following inequality
holds for any m-dimensional LLL-reduced basis H [2]:

kh1k  ↵

m�1
2

dH, (4)

where ↵ =

1
��1/4 (↵ = 2 if � =

3
4 ).

Moreover, the first basis vector cannot be too big compared
to the Gram-Schmidt vectors {h⇤

i }:

kh1k  ↵

i�1
2 kh⇤

i k , 81  i  m.

In particular, if j = argmin1im kh⇤
i k,

dH  kh1k  ↵

j�1
2

�

�h⇤
j

�

�

= ↵

j�1
2
a(H)  ↵

m�1
2

a(H). (5)

C. Lattice reduction-aided decoding

In this section we briefly review existing detection schemes
which use the LLL algorithm to preprocess the channel matrix,
in order to improve the performance of suboptimal decoders
such as ZF or SIC [16, 15, 3].
Let Hred = HU be the output of the LLL algorithm on H.
We can rewrite the received vector as y = HredU

�1x+w.

• The LLL-ZF decoder outputs

x̂LLL�ZF = QS

⇣

U
⇣j

H†
redy

m⌘⌘

,

where H†
red = (HT

redHred)
�1HT

red is the Moore-
Penrose pseudoinverse of Hred, b·e denotes component-
wise rounding to the nearest integer and QS is a quanti-
zation function that forces the solution to belong to the
constellation S .

• The LLL-SIC decoder performs the QR decomposition
Hred = QR, computes ey = QTy, finds by recursion ex
defined by

x̃m =

�

ỹm

rmm

⇡

,

x̃i =

$

ỹi �
Pm

j=i+1 rij x̃j

rii

'

, i = m� 1, . . . , 1,

and finally outputs x̂LLL�SIC = QS (Uex).

D. Improved lattice reduction

Recently, Kim and Park [9] have proposed a new decoding
technique based on the LLL algorithm, called Improved lattice
reduction, which allows to estimate the transmitted message
directly from the unimodular reduction matrix.
Let y be the (real) received vector in the model (2). Consider
the (n+ 1)⇥ (m+ 1) augmented matrix

eH =

✓

H �y
01⇥m t

◆

=

0

B

B

B

@

h1,1 · · · h1,m �y1
...

...
hn,1 · · · hn,m �yn
0 · · · 0 t

1

C

C

C

A

(6)

where t > 0 is a parameter to be determined.
Let eHred =

eHeU be the output of the LLL algorithm on eH.
• The Improved lattice reduction decoder outputs

x̂ILR = QS(eu1,m+1, . . . , eum,m+1)
T (7)

In [9], the parameter t is chosen such that t > rm,m, where
R = (ri,j) is the upper triangular matrix in the the QR
decomposition Hred = QR. This ensures that the Lovasz
condition on the last column of the augmented matrix eH is
always verified. Therefore, LLL-reducing eH amounts to LLL-
reducing the submatrix H and then performing a final round
of size reduction without swaps on the last column.
Although not explicitly stated in [9], the performance of
improved lattice reduction is exactly the same as LLL-SIC.
In fact, it is not hard to prove by induction that

QS(eum+1) = QS

✓

Pn
i=1 exiui

1

◆

=

✓

ˆxLLL�SIC

1

◆

where ui and eui are the columns of U and eU respectively.

III. AUGMENTED LATTICE REDUCTION

We introduce here a different decoder based on the aug-
mented matrix (6) which, by carefully choosing the parameter
t, greatly enhances the performance with respect to Improved
lattice reduction.
Observe that the points of the augmented lattice L( eH) are of

the form
✓

Hx0 � qy
qt

◆

, x0 2 Zm
, q 2 Z. In particular, the

vector v =

✓

Hx� y
t

◆

=

✓

w
t

◆

belongs to the augmented

lattice. We will show that for a suitable choice of the parameter
t, and supposing that the noise w is exponentially smaller than
the minimum distance in the original lattice L(H), v is the
shortest vector in the lattice and the LLL algorithm finds this
vector. That is, ±v is the first column of eHred =

eHeU, the
output of LLL algorithm on eH. Clearly, since eH is full-rank
with probability 1, in this case the first column of the change of

basis matrix eU is
✓

±x
±1

◆

. Thus we can “read” the transmitted

message directly from the change of basis matrix eU.
To summarize, in order to decode we can perform the LLL
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algorithm on eH, and given the output eHred =

eHeU, we can
choose

ˆx = QS

✓�

1

eum+1,1
(eu1,1, . . . , eum,1)

T

⇡◆

, (8)

where eU = (eui,j). The previous decoder can be improved by
including all the columns of Hred in the search: let

uk =

1

eum+1,k
(eu1,k, . . . , eum,k)

T
, k = 1, . . . ,m.

If |eum+1,k| = 1 for some k 2 {1, . . . ,m}, we define

kmin = argmin

k s.t. |eum+1,k|=1
kHuk � yk ,

otherwise kmin = 1. Then the Augmented Lattice Reduction
decoder outputs

ˆxALR = QS (bukmine) , (9)

IV. PERFORMANCE

A. Diversity

In this paragraph we will investigate the performance of
augmented lattice reduction. We begin by proving that our
method, like LLL-ZF and LLL-SIC, attains the maximum
receive diversity gain of N , for an appropriate choice of the
parameter t in (6). The diversity gain d of a decoding scheme
is defined as follows:

d = � lim

⇢!1

log(Pe)

log(⇢)

,

where Pe denotes the error probability as a function of the
signal to noise ratio ⇢.

Proposition 1. If the augmented lattice reduction is performed
using t = "a(Hred), where a(Hred) is the length of the
smallest vector in the Gram-Schmidt orthogonalization of
Hred, and "  1

2
p
2↵

m
2

, then it achieves the maximum receive
diversity N .

Remark. It is essential to use a(Hred) in place of a(H). In
fact, for general bases H that are not LLL-reduced, there is no
lower bound of the type (5) limiting how small the smallest
Gram-Schmidt vector can be. For a(Hred), putting together
the bounds (3) and (5), we obtain

dH

↵

m�1
2

 a(Hred)  dH (10)

Note that the LLL reduction of H does not entail any addi-
tional complexity, since it is the same as the LLL reduction
on the first m columns of eH. In fact the parameter t can be
chosen during the LLL reduction of eH, after carrying out the
LLL algorithm on the first m columns.

In order to prove the previous Proposition, we will show that
in the (m+1)-dimensional lattice L( eH) there is an exponential
gap between the first two successive minima. Then, using the
estimate (4) on the norm of the first vector in an LLL-reduced
basis, one can conclude that in this particular case the LLL
algorithm finds the shortest vector in the lattice L( eH) with

high probability. This, in turn, allows to recover the closest
lattice vector Hx to y in L(H) supposing that the noise w is
small enough.
The following definition makes the notion of “gap” more
precise:

Definition. Let v be a shortest nonzero vector in the lattice
L(H), and let � > 1. v is called �-unique if 8u 2 L(H),

kuk  � kvk ) u,v are linearly dependent.

We now prove the existence of such a gap under suitable
conditions:

Lemma 1. Let eH be the matrix defined in (6), and let t =

"a(Hred), with "  1

2
p
2↵

m
2

.
Suppose that kwk = ky �Hxk  "

↵
m�1

2
dH.

Then v =

✓

Hx� y
t

◆

is an ↵

m
2 -unique shortest vector of

L( eH).

Remark. Observe that the hypothesis on kwk implies in
particular that kwk < dH

2 and Hx is indeed the closest lattice
point to y.

Proof: We need to show that any vector u 2 L( eH) that
is not a multiple of v must have length greater than ↵

m
2 kvk.

By contradiction, suppose that 9u =

✓

Hx0 � qy
qt

◆

2 L( eH)

linearly independent from v such that kuk  ↵

m
2 kvk . Since

kuk � |q| t,

|q|  kuk
t

 ↵

m
2 kvk
t

.

On the other side, kuk  ↵

m
2 kvk implies that also

kHx0 � qyk  ↵

m
2 kvk. Consider

kHx0 � qHxk  kHx0 � qyk+ kqy � qHxk 

 ↵

m
2 kvk+ |q| ky �Hxk  ↵

m
2 kvk+ ↵

m
2 kvk
t

kwk 

 ↵

m
2
t

s

1 + kwk2

t

2

✓

1 +

kwk
t

◆

(11)

The bound (10) on a(Hred) implies
"

↵

m�1
2

dH  t  "dH, kwk < t

Using these inequalities, we can bound the expression (11)
with

↵

m
2
"dH2

p
2 < dH.

Thus kHx0 � qHxk < dH. But this is a contradiction because
Hx0 � qHx 2 L(H) and is nonzero since v and u are
linearly independent. Therefore v is ↵

m
2 -unique. (Since the

last coordinate of v in the basis eH is 1, v cannot be a nontrivial
multiple of another lattice vector.)

Lemma 2. Under the hypotheses of Lemma 1, the augmented
lattice reduction methods (8) and (9) correctly decode the
transmitted signal x.
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Proof: Let eHred =

eHeU denote the output of the LLL

reduction of eH, and let ˆh1 =

eH

✓

x0

q

◆

be its first column. The

property (4) of LLL reduction in dimension m+1 entails that
�

�

�

ˆh1

�

�

�

 ↵

m
2
deH. But since v =

✓

Hx� y
t

◆

has been shown

to be ↵

m
2 -unique in the previous Lemma, it means that ˆh1 and

v are linearly dependent; equivalently, 9a, b 2 Z \ {0} such
that av + b

ˆh1 = 0. In particular at + bqt = 0, that is a =

�bq and ˆh1 = qv. Then by definition of eH, ˆh1 =

eH

✓

qx
q

◆

.

This means that the first column of the reduction matrix eU

is
✓

qx
q

◆

, and so ˆxALR = QS(bu1e) = QS (qx/q) = x and

the augmented lattice reduction methods (8) and (9) correctly
decode the transmitted message.
(Observe that this is possible only if |q| = 1, since det(

eU) is
also a multiple of q and eU is unimodular.)

Thus for any channel realization H, we have the following
bound on the error probability for the augmented lattice
reduction method:

Pe,ALR(H)  P

⇢

kwk > "

↵

m�1
2

dH

�

= P{kwk > "

0
dH}.

To conclude the proof of Proposition 1, we need to show that

lim

⇢!1

� logP{kwk > "

0
dH}

log ⇢

� N

This turns out to be true. In fact, it has been shown in [14]
(Proof of Theorem 2), that for any constant cM depending
only on the number of transmit antennas3,

P{kwk > cMdH}  C(ln(⇢))

N+1

⇢

N
for N = M,

P{kwk > cMdH}  C

⇢

N
for N > M.

Thus we have shown that augmented lattice reduction achieves
the maximum receive diversity N with the choice t =

"a(Hred).

B. Simulation results

Figure 1 shows the comparison of augmented lattice re-
duction with LLL-SIC detection, both using MMSE-GDFE
preprocessing. The simulations refer to an uncoded 6 ⇥ 6

MIMO system using 16-QAM (quadrature amplitude modu-
lation) constellations. The improved decoder defined in (9) is
used for augmented lattice reduction.
Two versions of augmented lattice reduction with different
values of the parameter " are compared. Clearly it is preferable
to choose " as big as possible in order to minimize the
probability P

n

kwk > "

↵
m�1

2
dH

o

. Version 1 corresponds to
the choice " =

1

2
p
2↵

m
2

, the highest value of " that verifies the

3This result was used in [14] in order to prove that the LLL-ZF decoder
achieves the receive diversity order. The proof in [14] actually refers to the
complex model (1), but the statement also holds for the real model since
dH = dHc , kwk = kwck.
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MMSE−GDFE+ALR Version 1
MMSE−GDFE+ALR Version 2
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Figure 1. Performance comparison of augmented lattice reduction with
LLL-ZF, LLL-SIC and Improved Lattice Reduction with MMSE-GDFE
preprocessing for a 6⇥ 6 MIMO system using 16-QAM.
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Figure 2. Performance comparison of augmented lattice reduction with LLL-
ZF and LLL-SIC detection with MMSE-GDFE preprocessing for a 8 ⇥ 8
MIMO system using 16-QAM.

hypothesis of Proposition 1. At the symbol error rate (SER) of
1 · 10�4, its performance is within 0.8 dB from ML decoding
and gains 1.9 dB with respect to LLL-SIC decoding.
Version 2 corresponds to a value of " optimized by computer
search (experimentally, this is around 2

�m
4 ), whose perfor-

mance is within only 0.4 dB of ML decoding at the SER of
1 ·10�4. From now on, we will always consider this optimized
version. For higher values of ", we are not able to prove that
the LLL algorithm finds the shortest lattice vector in L( eH).
However, it is well-known that the LLL algorithm performs
much better on average than the theoretical bounds predict.

The gain with respect to LLL-SIC decoding increases with
the number of antennas: it is 3.5 dB for an 8 ⇥ 8 MIMO
system, at the SER of 10

�4. On the other side, augmented
lattice reduction is still within 0.8 dB from ML performance
(see Figure 2).
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Figure 3. Complexity comparison (in flops) of augmented lattice reduction
with LLL-ZF, LLL-SIC and sphere decoding as a function of the number
n of transmit and receive antennas, at SNR = 12dB, using 16-QAM
constellations.

V. COMPLEXITY

In this section we compare the computational complexity of
augmented lattice reduction, LLL-ZF and LLL-SIC decoding.
We are interested in the complexity order as a function of the
number of transmit and receive antennas.

A. Simulation results

Figure 4 shows the average number of iterations of the LLL
algorithm for LLL-aided linear decoding and the augmented
lattice reduction method. We have chosen � =

3
4 in all the

numerical simulations.
While the number of iterations of LLL is indeed higher, ap-

proximately by a factor 2, for the augmented lattice reduction,
the total complexity expressed in flops4 is about the same for
LLL-SIC and the augmented lattice method (see Figure 3). The
additional complexity of the LLL algorithm is balanced out by
the complexity savings due to the fact that QR decomposition
is not needed.

B. Complex LLL reduction

A generalization of the LLL algorithm to complex lattices
has been studied in [13] and applied to MIMO decoding in
[4]. It has been show experimentally in [4] that the complex
versions of LLL-ZF and LLL-SIC decoding have essentially
the same performance of their real counterparts but with
substantially reduced complexity.
A complex version of the augmented lattice reduction can
be implemented by LLL-reducing the (N + 1) ⇥ (M + 1)-
dimensional matrix

eHc =

✓

Hc �yc

01⇥N t

◆

,

4Here we define a “flop” as any floating-point operation (addition, multi-
plication, division or square root).

and allows to save about 40% of computational costs without
any change in performance.

VI. CONCLUSIONS

In this paper, we introduced a new kind of lattice-reduction
aided decoding which does not require a linear or decision-
feedback receiver at the last stage. We proved that this method
attains the maximum receive diversity order. Simulation results
evidence that the new technique has a substantial performance
gain with respect to the classical LLL-ZF and LLL-SIC
decoders, while having approximately the same complexity
order as LLL-SIC.
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