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Abstract—In this paper, block-coded modulation is used to de-
sign a multiple-input multiple-output (MIMO) space–time
code for slow fading channels. The Golden Code is chosen as the
inner code; the scheme is based on a set partitioning of the Golden
Code using two-sided ideals whose norm is a power of two. In this
case, a lower bound for the minimum determinant is given by the
minimum Hamming distance. The description of the ring structure
of the quotients suggests further optimization in order to improve
the overall distribution of determinants. Simulation results show
that the proposed schemes achieve a significant gain over the un-
coded Golden Code.

Index Terms—Coding gain, Golden Code, Reed–Solomon codes,
space–time block codes.

I. INTRODUCTION

T HE wide diffusion of wireless communications has led
to a growing demand for high-capacity, highly reliable

transmission schemes over fading channels. The use of multiple
transmit and receive antennas can greatly improve performance
because it increases the diversity order of the system, defined
as the number of independent transmit–receive paths. In order
to exploit fully the available diversity, a new class of code de-
signs, called Space–Time Block Codes, was developed in [1]. In
the coherent, block fading model, where the channel coefficients
are supposed to be known at the receiver, and remain constant
for a time block, the fundamental criteria for code design are

— the rank criterion, stating that the difference of two distinct
codewords or “space–time blocks” must be a full-rank ma-
trix,

— the determinant criterion, stating that its minimum deter-
minant ought to be maximized [1], [2].

Codes meeting these two criteria can be constructed using tools
from algebraic number theory. In particular, by choosing a
subset of a division algebra over a number field as the code,
one ensures that all the nonzero codewords are invertible. If,
furthermore, this subset is contained in an order of the algebra,
the minimum determinant over all nonzero codewords will be
bounded from below and will not vanish when the size of the
constellation grows to infinity [3]–[5].
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The construction of codes from cyclic division algebras
was first introduced in [6]. In the multiple-input mul-
tiple-output (MIMO) case, Belfiore et al. [7] designed the
Golden Code , a full-rate, full-rank, and information-lossless
code satisfying the nonvanishing determinant condition. The

MIMO codes that achieve these properties were called
Perfect Codes in [8] and also studied in [9].

In this paper, we focus on the slow block-fading channel,
where the fading coefficients are assumed to be constant for a
certain number of time blocks .1 Traditionally, the design of
space–time codes has focused either on the case of short block
lengths, where the quasi-static interval is approximately the
same as the number of transmit antennas [6], [11], [8], [9],
[5], [12], or on the case [1], [13], [12]. Here we con-
sider the case of moderate block lengths, that falls in between
these two categories.

Even though fading hinders transmission with respect to the
AWGN case, fast fading is actually beneficial because the trans-
mission paths at different times can be regarded as independent.
On the contrary, with slow fading the ergodicity assumption
must be dropped, leading to a performance loss. This loss can
be compensated using coded modulation: in a general setting, a
full-rank space–time block code is used as an inner code to guar-
antee full diversity, and is combined with an outer code which
improves the minimum determinant.

We will take as inner code the Golden Code: we focus on
the problem of designing a block code ,
where each component is a Golden codeword. We will as-
sume that the quasi-static interval has length . In order to
increase the minimum determinant, one can consider the ideals
of . In [14] and [13], a set partitioning of the Golden Code is
described; it is based on a chain of left ideals , such
that the minimum determinant in is times that of .

Choosing the components independently in , one ob-
tains a very simple block code. For small sizes of the signal
constellation these subcodes already yield a performance gain
with respect to the “uncoded” Golden Code (that is, with re-
spect to choosing independently). However, the gain
is cancelled out asymptotically by the loss of rate as the size of
the signal set grows to infinity, since an energy increase is re-
quired to maintain the same spectral efficiency, or bit-rate per
channel use. A better performance is achieved when the are
not chosen in an independent fashion. In [13], two encoders are
combined: a trellis encoder whose output belongs to the quotient

1This kind of behavior might be caused by large obstructions between trans-
mitter and receiver. The model is realistic if is smaller than the coherence
time of the channel; for most practical applications, it has been estimated [10]
that the coherence time is greater than 0.01 s, so that is a legitimate
assumption.
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, and a lattice encoder for (trellis coded modula-
tion).

The global minimum determinant for the block code is

This expression is difficult to handle because its “mixed terms”
are Frobenius norms of products in . The codes described
in [13] are designed to maximize the approximate parameter

and so a priori they might
be suboptimal; we will consider the mixed terms and so obtain
a tighter bound for .

A rough estimate of the coding gain for the block code comes
from its minimum “Hamming distance”, that is, the minimum
number of nonzero components. To increase the Hamming
weight, we will take as our outer code an error correcting code
over the quotient of by one of its ideals.

The paper is organized as follows. After an Overview of the
proposed encoder (Section II), we recall the algebraic construc-
tion of the Golden Code and its properties in Section III. In
Section IV, we describe the general setting for Golden block
codes and the coding gain estimates; in Section V, we study the
two-sided ideals of that are suitable for binary partitioning.
In Sections VI and VII, we introduce the repetition codes and
the Reed–Solomon block codes over and discuss their perfor-
mance obtained through simulations. The interested reader can
find in the Appendix the main definitions and theorems con-
cerning quaternion algebras that are cited in the paper.

II. OVERVIEW

The general structure of the encoder is the following (see
Fig. 1).

a) The binary information message is divided into two parts.
A first data block of bits, where , is en-
coded into a block of length by a linear binary code
with generator matrix . The second, of
length bits, is left uncoded. This block is optional,
that is .

b) The two binary sequences are “mixed up” and rearranged
into vectors of bits each. Each of the
binary vectors is then used to modulate four signals , ,
, belonging a QAM constellation of size . (We

only considered the case of square constellations.)
c) Finally, each of the quadruples is used to

encode a Golden Codeword

(1)

where , .
The Golden Code is full-rate and transmits two symbols
per channel use; each symbol carries bits. The
total information rate of the binary code is . The

rate of the block code will be bpcu.

Fig. 1. The general structure of the encoder.

The encoder will be based on a partition of the Golden Code
of cardinality :

Each subset is a coset of , where is a
scalar factor.

The permutation of the bits in Step b) and the labelling of the
constellation are chosen in such a way that for each of the
vectors, the coded bits select one of the cosets of and the
uncoded bits specify a point in the coset.

More precisely, we consider a partition of the QAM constel-
lation into subsets of size (if , the subsets
consist of a single point). Each subset is a scaled version of a

-QAM constellation. For instance, a 16-QAM constella-
tion can be partitioned into four scaled 4-QAM constellations,
as shown in Fig. 8.

Two examples of block-coded modulation will be described
in detail, namely, the following.

• A “repetition code” over the cosets of . In this case
the scaling factor is , the block length is 2, ,

, , so that 4-QAM constellations are used,
with a partitioning into two BPSK constellations.

• A “Golden Reed–Solomon” scheme, for which the binary
code is derived from an error-correcting code
over the finite field , simply by representing the ele-
ments of the finite field as polynomials of degree
with binary coefficients. In particular, we consider two
cases for a scaling factor :
— In the first case we use 4-QAM constellations, and the

uncoded part is empty ; the partition
consists of individual points.

— In the second, we consider 16-QAM constellations par-
titioned into four 4-QAM constellations .

III. THE GOLDEN CODE

Since we are interested in the partitioning of the Golden Code,
we begin by recalling its algebraic construction. For the sake of
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simplicity, definitions and theorem statements are collected in
Appendix B.

The Golden Code , introduced in [7], is a full rate,
full-diversity, information lossless and DMT achieving
code for two transmit and two or more receive antennas.
This code is constructed using the cyclic division algebra

over the number field , where
is the golden number. The set is the -vector

space , where is such that ,
.

Here we denote by the canonical conjugacy sending an el-
ement to , where

As its degree over its center is , is also called a
quaternion algebra. If we choose , is not a norm in

, and this implies that is a division algebra (see
Theorem 7 in Appendix B) [7].

is a splitting field for (see Theorem 8 in
Appendix B), and so is isomorphic to a subalgebra of

. The inclusion is given by

(2)

That is, every element admits a matrix representation

(3)

The Golden Code is a subring of having two additional
properties: the minimum determinant

should be strictly bounded away from 0, and moreover the code
is information lossless.

For the first condition, if one requires that the matrix elements
of belong to the ring of integers of , then
belongs to the -order

(4)

Since implies that the reduced norm
belongs to , we have , so for
every .

Each codeword of carries two symbols ,
in , or equivalently four information symbols

: the code is full-rate.
In order to have an information lossless code, a right principal

ideal of of the form was used, where : its matrix
representation is

(5)

The Golden Code is defined as . Every codeword in
is of the form , with : see (1).

Remark 1: We have seen that , .
Consequently, , .

In fact, if ,

, since .
The code has cubic shaping: it is isometric to the cubic lat-

tice (and so it is information lossless). In fact, if we con-
sider the linear mapping that vectorizes matrices

then , where is the unitary matrix

(6)

Even though is defined (up to a scaling constant) as a right
ideal, it is easy to see that actually it is a two-sided ideal: if

,

observing that . But

(7)

is an homomorphism of -modules that maps into itself
bijectively, therefore .

Finally, is an integral ideal because it is contained in .

Remark 2: For the sake of simplicity, in this section we have
described the Golden Code as an infinite code. However in a
practical transmission scheme, one considers a finite subset of

, by choosing the information symbols , , , in a QAM
constellation carved from .

IV. GOLDEN BLOCK CODES

A. System Model

We consider a slow block-fading channel, where the channel
coefficients remain constant during the transmission of code-
words. The transmitted signal will be a
vector of Golden codewords in a block code . The re-
ceived signal is given by

(8)

where the entries of are independent and identically
distributed (i.i.d.) complex Gaussian random variables with zero
mean and variance per real dimension equal to , and is
the complex Gaussian noise with i.i.d. entries of zero mean and
variance . We consider the coherent case, where the channel
matrix is known at the receiver.
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The pairwise error probability is bounded by [1]

(9)

In the above formula, is the average energy per symbol of
and

In order to minimize the PEP for a given SNR, we should max-
imize . We will show that

where is the number of nonzero codewords in
(a sort of “Hamming weight”), and

is the minimum square determinant of the Golden Code.
If we simply choose independently in the Golden

Code, the code performance will be poor compared to the fast
block fading model. We call this scheme the “uncoded Golden
Code”: in this case , for any length . To compare
the error probability of a block code with that of the uncoded
Golden Code of equal length with the same data rate, we can
employ the asymptotic coding gain defined in [13]

(10)

where , and , are the minimum determi-
nants and average constellation energies of the block code and
the uncoded case, respectively.

In all the cases that we considered, the theoretical gain
turned out to be smaller than the actual gain evidenced by com-
puter simulations. This is not surprising, since is only a com-
parison of the dominant terms in the pairwise error probability.

B. Estimates of the Frobenius Norm

First of all, we give a more explicit expression for
.

We define the quaternionic conjugacy in the algebra

Observe that ,

(11)

(12)

(13)

where denotes the identity matrix.
Recall that the Frobenius norm of a matrix is

Then the following formula holds.

Lemma 1:

(14)

The proof can be found in Appendix A.
We also state some simple properties of the quaternionic con-

jugate and of the Frobenius norm that will be useful in the se-
quel.

Remark 3:
a) If , .
b) Let , be two complex-valued matrices. Then

(15)

In particular

(16)

c) If ,

(17)

From (15), it follows that the determinant is bounded from
below by the squared Hamming weight.

Lemma 2: Let . Then

where is the Hamming
weight of the block .

V. TWO-SIDED IDEALS OF

The choice of a good block code of length will be based on
a partition chain of ideals of the Golden Code. We would like
to obtain a binary partition, which is simpler to use for coding
and fully compatible with the choice of a QAM constellation:
we must then use ideals whose index is a power of , that is,
whose norm is a power of .

A similar construction appears in [13] and employs one-sided
ideals.

We prefer to choose two-sided ideals; this is a necessary and
sufficient condition for the quotient group to be also a ring (see
[15, Th. 2.7]). Moreover, two-sided ideals are also invariant
under involution (see Theorem 15 in Appendix C and the fol-
lowing Remark). This will be useful for code optimization in
Section VI.

In this section we describe the structure of the two-sided
ideals of whose norm is a power of . Unfortunately,
it turns out that the only two-sided ideals with this property
are the trivial ones. We then study the corresponding quotient
rings, which are rings of matrices over nonintegral rings.
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For these constructions, we will need some notions from non-
commutative algebra (see Appendix C), relating the existence of
two-sided ideals to the ramification of primes over the base field.

As we have seen in Section III, is a
-order of , and is a two-sided principal

ideal of .
is also a prime ideal since is a

prime ideal of (see Theorem 13 in Appendix C).
Observe that the prime ideals and of are

both ramified in : in fact

and where

(Remark that , ).
It has been shown in [3] and [5], Section V, that is a max-

imal order and its reduced discriminant is : consequently,
from Proposition 11 we learn that and are the
only ramified primes in .

Then Theorem 15 implies that the prime two-sided ideals of
are either of the form , where is prime in , or belong

to .
It follows that the only two-sided ideals of whose norm is

a power of are the trivial ideals of the form .

A. The Quotient Ring

In the sequel, we will denote by the integral ideal .
Consider the prime ideal . and are coprime

ideals, that is ; as a consequence,

Recall the following basic result:

Theorem 3: (Third isomorphism theorem for rings).
Let and be ideals in a ring . Then .

Taking and , we get

(18)

If and are the
canonical projections on the quotient, the ring isomorphism in
(18) is simply given by .

Theorem 13 implies that is a simple algebra over
. We denote the image of through

with .

Lemma 4: is isomorphic to the ring of
2 2 matrices over .

Proof: We use the well-known lemma [15]:

Lemma 5: Let be a ring with identity, a proper ideal of
, a free -module with basis and the

canonical projection. Then is a free -module with
basis and .

We know that is a -module; the lemma implies
that it is also a free -module, that is a vector space
over , whose basis is .

We define an homomorphism of -vector spaces
by specifying the images of

the basis

It is one-to-one since , , , are linearly
independent. To prove that is also a ring homomorphism, it is
sufficient to verify that for all pairs of
basis vectors , .

Recall that as a -lattice, is isometric to , and a
canonical basis is given by . The corresponding
elements , , , of are

(19)

It is easy to check that the only invertible elements in
are

Observe that the lifts to of non-invertible elements have a
higher determinant.

Remark 4: If is noninvertible

Proof: is noninvertible in if and only if
its determinant is noninvertible in , that is,

. (If , , since is a
division ring.)

Then .

B. The Quotient Ring

Again, and are coprime and so ,
; from the third isomorphism theorem for rings, .

Lemma 6: is isomorphic to the ring of
matrices over the ring .

Proof: First of all, Lemma 5 implies that is a free
-module, that is a free -module, of dimension . As in

the previous case, we can construct an explicit homomorphism
of -modules :

One can easily check that is bijective (the images of the basis
elements being linearly independent) and that it is a ring homo-
morphism.
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To find an explicit isomorphism between and ,
consider the following diagram, where is the
projection on the quotient, is given by the third isomorphism
theorem for rings, and is the mapping
defined in Lemma 6

The basis of as a -module is also a basis
of as an -module. The isomorphism is simply the
composition of the inclusion and the quotient mod

. We can compute the images through of the basis vectors:
observing that

we get

(20)

(21)

Also in this case, the lifts of non-invertible elements of
in will have non-invertible determinant, that is

.

C. The Encoder

The codes that we consider follow the general outline of
Forney’s coset codes [16], taking advantage of the decompo-
sition , where is or , and
denotes a set of coset leaders.

— An linear code over or operates
on part of the information data, and these coded bits are
used to select .

— The remaining information bits are left uncoded and used
to select .

— The corresponding block codeword is
, where is the coset leader of .

For a coset code, is bounded by the minimum determinant
of and the minimum distance of the linear code

(22)

In fact, if , then , and for
, . If on the contrary

, there are at least components of
which do not belong to , and consequently are nonzero, and

.
So the performance of a coset code will be always limited by

the minimum determinant of , except if the code on is the
zero code.

If is simply or , the set of possible coordi-
nates for the coset leaders of in coincides with
the (BPSK) and (4-QAM) constellations respectively. This
makes it much easier to implement coset codes with high Ham-
ming distance.

VI. THE REPETITION CODE

Here we consider the case where , and the linear
code is simply the repetition code of length over . Recall
that the quotient group is a ring because is a two-sided
ideal of .

If is the projection on the quotient ring
), we define

A. The Minimum Determinant

Recall that as we have seen in Lemma 1

With the code , we have . In fact if (re-
spectively, ) is a codeword of Hamming weight , clearly

and is greater than the
minimum square determinant in , which is . If on the
contrary ,

because of (15).
By choosing any bijection of the quotient ring

in itself, one obtains a simple variation of the repetition scheme

Remark 5: A suitable choice of can slightly improve perfor-
mance. In the case of the repetition code, suppose that

.
— If is invertible in , then

in the basis (19), and so the minimum de-
terminant of a codeword is also 1,
and the minimum of is . Thus

.
— If on the other side corresponds to a non-invertible,

nonzero element in , then (see Remark 4)

and

.
This remark suggests that it might be more convenient to con-
sider a group homomorphism which
maps invertible elements into non-invertible elements, raising
the minimum determinant to if invertible, non-in-
vertible: , but (see Remark 3)
and so , and .

Such a function is not difficult to define, and in the case
of 4-QAM modulation, an exhaustive search on the finite lat-
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tice shows that the distribution of determinants for is indeed
better.2

B. The Encoder

Only 4 bits are needed to select an element of
, while the number of bits needed to select an ele-

ment in the ideal depends on the chosen modulation scheme.
Using 4-QAM constellations, the two choices of an element in

require 4 bits each: in total, each codeword carries 12
information bits, yielding a spectral efficiency of 3 bpcu.

Suppose that is the binary input.
— are used to select the matrix

in the basis (19). The corre-
sponding element of is

.
— are used to select two codewords in :

,
.

— The final block codeword is .

C. Asymptotic Coding Gain

Since the minimum determinant does not change, the asymp-
totic coding gain estimate is the same for all choices of .

We compare these schemes with the uncoded Golden Code
at 3 bpcu, using 4-QAM constellations for the symbols ,
and BPSK constellations for the symbols , in each Golden
codeword (see (1)). The average energy per symbol is

, and

This computation gives a theoretical gain of at least
dB dB.

D. Simulation Results

Fig. 2 shows the performance of the codes and , which
gain 2.4 and 2.9 dB, respectively, over the uncoded scheme at 3
bpcu at the frame error rate of , supposing that the channel
is constant for two time blocks.

VII. GOLDEN REED–SOLOMON CODES

The repetition code has the advantage of simplicity, but
clearly its performance is limited by the fact that the minimum
Hamming distance is only . To increase the Hamming dis-
tance, we need to use a more sophisticated error-correcting
code.

As we have seen in the previous sections, in addition to the
minimum Hamming distance, the multiplicative structure and

2In fact, if we define , ,
, with respect to the basis (19),

we have

Fig. 2. Performance of the repetition code and of the variation at 3
bpcu compared with the uncoded Golden Code scheme with the same spectral
efficiency. The channel is supposed to be constant for two time blocks.

the minimum number of noninvertible components also have a
significant influence on the coding gain of a block code design.
Ideally, in order to keep track of these parameters, one ought
to employ error-correcting codes on . However, at
present very little is known about codes over noncommutative
rings; we choose shortened Reed–Solomon codes instead be-
cause they are maximum distance separable and their imple-
mentation is very simple; we will restrict our attention to the
additive structure, defining a group isomorphism between
and the finite field

A. The 4-QAM Case

Using 4-QAM constellations to modulate each of the four
symbols , , , in a Golden codeword (1), we obtain a total
of 256 codewords, one in each coset of .

We consider an Reed–Solomon code over .
Each quadruple of 4-QAM signals carries 8 bits or
one byte; each block of Golden codewords will carry bytes,
corresponding to information bytes.

The encoding procedure involves several steps.
a) Reed–Solomon encoding:

Each information byte can be seen as a binary polyno-
mial of degree , that is, an element of the Galois Field

. An information message of bytes, seen as a vector
, is encoded into a code-

word using the
shortened code . For our purposes, it is much better to
use a systematic version of the code that preserves the first

bits of the input.
b) From the Galois field to the matrix ring :

We can represent the elements of as bytes,
simply by vectorizing each matrix and separating real and
imaginary parts. Since we are only working with the addi-
tive structure, we can identify and , which
are both -vector spaces of dimension . According to
our simulation results, it seems that the choice of the linear
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identification has very little influence on the code perfor-
mance.

c) From the matrix ring to the quotient ring
:

For this step, we make use of the isomorphism of
-modules de-

scribed in Section V-B that relates the coordinates with
respect to the bases and (20). Let

be the coordinates of a codeword in
the basis .

d) Golden Code encoding:
For each of the vector components, the symbols

correspond to four 4-QAM sig-
nals, and can be encoded into a Golden codeword of
the form (1). Thus we have obtained a Golden block

, where
is injective.

B. Decoding

ML decoding consists in the search for the minimum of the
Euclidean distance

over all the images of Reed–Solomon codewords.
One can first compute and store in memory the Euclidean

distances

(23)

for every component of the received vector and
for all the Golden codewords , that can be
obtained from a quadruple of 4-QAM symbols.

The search for the minimum can be carried out using the
Viterbi algorithm or a tree search algorithm.

Stack Decoding: For our computer simulations, we have
chosen to use a stack decoding algorithm. If the code is based
on an Reed–Solomon code with systematic gener-
ator matrix, the codewords are the possible paths in a
full tree with height and 256 outgoing branches per node.

The decoder will store in a stack a certain number of triples
, where is an incomplete path of length in the tree,

and is its distance from the initial segment of .
An upper bound for the minimum distance of the received

point to the lattice of Golden-RS codewords will be used as a
“cost function” for the stack.

a) Sorting of distances: Before the search, for each compo-
nent , the distances of (23) are sorted
in increasing order: let

be the resulting sequence.
b) First step: At the beginning, the initial segments of length

1 are inserted into a previously empty stack: the triples

are entered in decreasing order with respect to the
distance, discarding those whose distances are greater
than .

c) Intermediate steps: At each iteration of the algorithm, the
triple currently at the top of
the stack is examined.
• If , its “children” nodes

for

are generated, updating the corresponding Euclidean
distances

The “parent” node is deleted from the stack and the
children are inserted in the stack and sorted with respect
to distance, or discarded if the distance is greater than

.
(Knowing the minimum distances component-wise,
one can require a stronger condition without losing
optimality, namely, ).

• If , generate the Reed–Solomon codeword
and store in the stack

(recall that is an initial segment of ), where

• If , the search terminates and the initial segment
of length of is the decoded message.

d) Choice of the cost function : A simple bound for the
decoder may be the distance from the received signal of
the (unique) Golden-RS codeword corresponding to the
“closest choice” for the first
components. Any subset of components may be used
as well to improve the minimum provided that the corre-
sponding lines in the Reed–Solomon generator matrix are
linearly independent.

C. Simulation Results

In the 4-QAM case, the spectral efficiency of the Golden
Reed–Solomon codes is given by

bits
channel uses

bpcu

From Lemma 2, it follows that using an
Reed–Solomon code, .

If , the spectral efficiency is 2 bpcu. Comparing the
4-QAM, Golden-RS design with the
uncoded Golden Code using BPSK , the asymp-
totic coding gain is

(24)

Figs. 3 and 4 show the performance comparisons of the
Golden-RS codes and with the corresponding
uncoded schemes at the spectral efficiency of 2 bpcu.

Assuming the channel to be constant for 4 blocks and 6
blocks, respectively, the Golden-RS codes outperform the
uncoded scheme by 6.1 dB and 7.0 dB.
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Fig. 3. Comparison between suboptimal decoding and ML decoding for the
code at 2 bpcu. The first method achieves a gain of only 1.1 dB

over the uncoded case, compared to the 6.1 dB of the second.

Fig. 4. Comparison between suboptimal decoding and ML decoding for the
code at 2 bpcu. The first method achieves a gain of 2.4 dB over the

uncoded case, compared to the 7.0 dB of ML decoding.

The gain for the code is unexpectedly high com-
pared with the theoretical coding gain (24) for , that is

dB dB. The rough estimate (24) is based on
the worst possible occurrence, that of a codeword of Hamming
weight in which all three nonzero components correspond to
invertible elements in the quotient.

However, we can verify empirically that in the 4-QAM case
and with our choice of the code, this event does not take
place and in fact the actual value for found by computer
search is , giving an estimate for the gain of 3.2 dB, a little
closer to the observed value.

This favorable behavior might be due to the fact that the
chosen constellation contains only one point in each coset, so
that the codewords of Hamming distance are few.

Also for the code, the actual gain (7.0 dB) is higher
than the theoretical gain ( dB dB based solely
on the minimum Hamming distance; 5.3 dB using the true value
of , that is .)

Fig. 5. Performance of , , and Golden
Reed–Solomon codes with suboptimal decoding at 2 bpcu compared to the
uncoded Golden Code scheme with the same spectral efficiency.

D. Suboptimal Decoding

One can replace maximum likelihood (ML) decoding with
separate Sphere Decoders on each of the components of
. The signal is then demodulated, and mapped to a vector

in using the inverse mappings of Steps c)
and b) in Section VII-A. The received sequence
does not necessarily belong to the RS code, so a final step of
RS decoding is needed. This “hard” decoding has the advan-
tage of speed and allows to use longer Reed–Solomon codes
with high minimum distance. However it is highly suboptimal;
performance simulations show that with this method the coding
gain is almost entirely cancelled out (see Fig. 3).

Suboptimal decoding also provides a good initial bound of
the distance of the received point from the lattice, which can
be used as a cost function for the stack decoder described in
Section VII-B.

• 2 bpcu: Fig. 5 shows the performance comparison of the
Golden-RS codes with suboptimal decoding with the un-
coded scheme at the spectral efficiency of 2 bpcu.
Assuming the channel to be constant for 4, 8, and 12
blocks, respectively, the , and
Golden-RS codes outperform the uncoded scheme at the
same spectral efficiency by 1.1, 1.7, and 2.8 dB at the FER
of .
The Golden-RS schemes seem to be more robust on
slow fading channels; in fact the performances of the
Golden- codes on a channel which is con-
stant for blocks remain almost unchanged (the variation
is less than 0.2 dB) when varies between 4 and 12, while
the uncoded Golden Code has a loss of almost 1.5 dB.

• 3 bpcu: Assuming the channel to be constant for 8, 16,
and 24 blocks, respectively, the , and

Golden-RS codes gain 1.5, 2.2, and 2.8 dB over
the uncoded scheme at the FER of (see Fig. 6).
Similarly to the previous case, the Golden-
codes lose less than 0.3 dB when varies between 8 and
24, while the Golden Code has a loss of 1.1 dB.
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Fig. 6. Performance of , , and Golden
Reed–Solomon codes with suboptimal decoding at 3 bpcu compared to the
uncoded Golden Code scheme with the same spectral efficiency.

E. The 16-QAM Case

Using 16-QAM modulation for each symbol , , , in a
Golden codeword, there are available Golden codewords,
or 256 words for each of the 256 cosets of in .

As in the 4-QAM case, we consider coset codes where
the outer code is an Reed–Solomon code on
the quotient . Intuitively, the minimum distance of the
Reed–Solomon code “protects” the cosets from being decoded
wrongly; if this choice is correct, the estimate for the right point
in the coset is protected by the minimum determinant in .

The total information bits transmitted are ; they will
be encoded into bits.

— The code outputs bits, which are used to encode
the first two bits of 16-QAM constellations, that is the
bits which identify one of the four cosets of in ;
each byte corresponds to a different coset configuration of

(see Fig. 8).
— the other bits, left uncoded, are used to choose the last

two bits of each 16-QAM signal.
In total, we have 16-QAM symbols, that is a vector of

Golden codewords . The resulting spectral
efficiency is

bits
channel uses

bpcu

In this case, the coding gain depends on the minimum determi-
nant of the ideal in addition to the minimum Hamming distance
in the quotient: we have seen in (22) that

With an error-correcting code of rate , the spectral
efficiency is 6 bpcu.

— If , , leading to an approx-
imate gain of 3.8 dB. Thus, it does not seem worthwhile

Fig. 7. The output of the Reed–Solomon code and the uncoded bits are “min-
gled” before modulation.

Fig. 8. The labelling of the 16-QAM constellation used for performance sim-
ulations. The first and second bit identify one of the four cosets of in
(drawn in different shades of gray); the third and fourth bit identify one of the
four points in the coset. We remark that this type of labeling cannot be a Gray
mapping.

to use long codes with a high minimum distance with this
scheme.

— If , , making for a gain of 2.5
dB.

F. Decoding

The ML decoding procedure for the 16-QAM case requires
only a slight modification with respect the 4-QAM case illus-
trated in Section VII-B. In the first phase, for each component

and for each coset leader , , we
find the closest point in that coset to the received component ,
that is

Computing and separately allows to perform only
512 products instead of . The second phase can be per-
formed as in the 4-QAM case, and the search is limited to the
“closest points” determined in the previous phase,
i.e.,

over all the images of Reed–Solomon code-
words.
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Fig. 9. Performance of the and Golden Reed–Solomon codes
with ML decoding at 6 bpcu compared to the uncoded schemes with the same
spectral efficiency.

G. Simulation Results

In the 16-QAM case, the and Golden
Reed–Solomon codes achieve a gain of 3.9 and 4.3 dB, respec-
tively, over the uncoded scheme at 6 bpcu at the frame error
rate of , supposing that the channel is constant for 4 and 6
time blocks (see Fig. 9).

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented Golden-RS codes, a coded
modulation scheme for slow-fading MIMO channels,
where the inner code is the Golden Code.

We consider a simple binary partitioning based on a two-sided
ideal of the Golden Code, whose set of coset leaders coincides
with a QAM symbol constellation. With a Reed–Solomon code
as the outer code in order to increase the minimum Hamming
distance among the codewords, we obtain a significant perfor-
mance gain with respect to the uncoded case.

Future work will deal with exploiting the ring structure of the
quotient to improve the overall distribution of determinants, in-
stead of focusing only on the minimum determinant. Our coded
modulation approach could also be used to improve the perfor-
mance of the and Perfect Codes in [8] in the slow
fading case.

APPENDIX A
PROOFS

We report here some of the proofs for the results stated in the
main part of the paper.

Proof of Lemma 1: For all , let :
then

We need to show that .
But , and therefore

, and

recalling that .
Proof of Remark 3:

a) Let

where . Then
. But for some

, and

The same is true for .

b) If , then

and

c) Let , . Then

since belongs to .

APPENDIX B
QUATERNION ALGEBRAS

This section summarizes some basic facts about quaternion
algebras that are used in the paper. Our main references are the
books of Vignéras [17] and Reiner [18].

Definition 1 (Quaternion Algebras): Let be a field. A
quaternion algebra of center is a central simple algebra of
dimension over , such that there exists a separable quadratic
extension of , and an element , with
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where is the non-trivial -automorphism of . is called
a maximal subfield of . will be denoted by the triple

.
Quaternion algebras are a special case of cyclic algebras. To

obtain a representation of as a -module, consider a prim-
itive element such that , and let ,

. Then

(25)

The following theorem, which follows from a more general re-
sult about cyclic algebras ([18, Corollary 30.7]) gives a suffi-
cient condition for a quaternion algebra to be a division ring.

Theorem 7: Let be a quaternion algebra.
If is not a reduced norm of any element of , then is a skew
field.

Definition 2 (Splitting Fields): Let be a central simple
-algebra. An extension field of splits , or is a splitting

field for , if

In the case of division algebras, every maximal subfield is a
splitting field ([18, Th. 7.15]):

Theorem 8: Let be a skew field with center , with finite
degree over . Then every maximal subfield of contains

, and is a splitting field for .

In the following paragraphs we will always consider a
Dedekind domain , its quotient field , and a quaternion
algebra over .

Definition 3 (Lattices and Orders): A full -lattice or ideal
in is a finitely generated -submodule in such that

, where

An -order in is a full -lattice which is also a subring of
with the same unity element. A maximal -order is an order

which is not properly contained in any other order of .
The following proposition is a consequence of [18, Th. 10.3].

Proposition 9: A subring of containing a basis for
over is an order if and only if all its elements are integral
over .

Remark 6: The notion of order is a generalization of the
notion of the ring of integers for commutative extensions. How-
ever, in the noncommutative case the set of elements which are
integral over the base field might not be a ring.

Definition 4 (Properties of Ideals): Given an ideal of ,
we can define the left order and the right order of as follows:

and are orders. is called
• two-sided if ,

• normal if and are maximal,
• integral if , ,
• principal if for some

The inverse of is the fractional ideal
.
The norm of an ideal is the set of reduced norms of

its elements, and it is an ideal of . If is principal,
.

APPENDIX C
IDEALS, VALUATIONS AND MAXIMAL ORDERS

Definition 5 (Valuations and Local Fields): A valuation
of is a positive real function of such that ,

a) ,
b) ,
c) .
is non-Archimedean if
; it is discrete if is an infinite cyclic group.

can be endowed with a topology induced by in the fol-
lowing way: a neighborhood basis of a point is given by the
sets

will be called complete if it is complete with respect to this
topology.

If is non-Archimedean, the set

is a local ring, called the valuation ring of . The quotient
, where is the unique maximal ideal of , is called

the field of residues of .
is a local field if it is complete with respect to a discrete

valuation and if is finite.

Definition 6 (Places): A place of is an immersion
into a local field . If is non-archimedean,

we say that it is a finite place; otherwise, that it is an infinite
place.

The finite places of arise from discrete -adic valuations
of , where ranges over the maximal ideals in the ring of
integers of . (Recall that the ring of integers in a number
field is always a Dedekind domain, and so the maximal ideals
coincide with the prime ideals).

In the case of infinite places , the -adic completion can be
(real primes) or (complex primes).
The notion of ramification for quaternion algebras is a gener-

alization of the notion of ramification for field extensions.

Definition 7 (Ramified Places): Let be a quaternion al-
gebra over , and a place of .

Consider the -module ; is isomorphic
to a matrix algebra over a skew field of center
and index over ; is called the local index of at .
We say that is ramified in if .

Complex primes are never ramified [18].
Given a maximal order , the set of ramified places

of is related to a particular two-sided ideal of :
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Definition 8 (Different and Discriminant): Let be an
order. The set

is a two-sided ideal, called the dual of . Its inverse
is a two-sided integral ideal, called the different of .

If is a basis of as a free -module,

The ideal of is called the reduced discriminant of
and is denoted by .

Proposition 10: If , are two orders and , then
.

For the following results see [17, Corollaire 5.3 and p. 86],
respectively.

Proposition 11: Let be a quaternion algebra unramified
at infinity.

A necessary and sufficient condition for an order to be max-
imal is that

Definition 9 (Prime Ideals): Let be an order, a two-
sided ideal of . is prime if it is nonzero and integer
two-sided ideals of , or .

The following theorems are a consequence of more general
results for central simple algebras ([18, Ths. 22.3, 22.4, 22.10,
25.7]).

Theorem 12: The two-sided ideals of an order form a
free group generated by the prime ideals.

Theorem 13: Let be a maximal order in a quaternion al-
gebra . Then the prime ideals of coincide with the maximal
two-sided ideals of , and there is a one-to-one correspondence
between the prime ideals in and the prime ideals of ,
given by .

Moreover, is a simple algebra over the finite field .

Theorem 14: Let be a maximal order in . For each
place of , let be the local index of at , and let
be the prime ideal of corresponding to (see Theorem 13).
Then only for a finite number of places , and

(26)

Theorem 15: The two-sided ideals of a maximal order
form a commutative group with respect to multiplication, which
is generated by the ideals of and the ideals of reduced norm

, where varies over the prime ideals of that are ramified
in .

Remark 7: For any prime ideal of , let
. Since , and divide the same prime
.

If is prime, from (26) we have . Since two-sided
ideals can be decomposed into ideals of and prime two-sided
ideals, they are invariant under involution.
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