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Abstract—In this work we propose a new recursive block
decoding method for MIMO systems. A complexity reduction is
obtained compared to existing methods by avoiding the exhaustive
decoding on one block. We propose the use of a semi-exhaustive
search using a list composed of the Maximum Likelihood (ML)
solution and its neighborhoods. We show through error probability
derivation that we can achieve the full diversity by fixing a
judicious choice of the list size or equivalently a threshold metric.
A desired diversity order can be obtained by changing the list
size. Simulation results show the obtained performances and the
complexity gain.

Index Terms—MIMO systems, Recursive decoding, Block de-
coding, Diversity order, Reduced complexity.

I. INTRODUCTION

Recent years witnessed a significant development of multiple-
input multiple-output (MIMO) systems over scattering-rich
wireless channels [1] for their ability to answer the increasing
need for more reliability and data rate on wireless networks.
Many decoders have been then adopted to retrieve signal streams
sent over these systems with a good performance. However, the
maximum likelihood decoders such as sphere decoder [2] or
Schnorr Euchner [3] algorithms known to be optimal decoders
require an exponential complexity in the number of antennas
[4]. Improvements/Modifications of these decoders have been
proposed to reduce their complexity at the possible cost of
performance degradation providing, hence, a tradeoff between
complexity and performance.

In the literature, recursive block decoding for Space-Time
coded systems [5–10] is shown to slightly reduce the known
ML decoding complexities. Taking advantage of the equivalent
channel matrix form induced from the code structure, partitioned
signal sets are decoded successively. The main issue of these
decoders is the use, at one step, of exhaustive search over one
block which increases the overall complexity.

A novel strategy is presented in this paper. Avoiding the
exhaustive search in the first decoding step, the algorithm cal-
culates the needed number of candidates that guarantees a fixed
diversity order and SNR gain. In addition, this algorithm offers
a significant computational complexity reduction compared to
the above mentioned algorithms.

The remainder of this paper is organized as follows. In section
II we describe the system model. In section III we review the
state of the art on block decoding. The proposed recursive block
decoding scheme is presented in section IV. Via the derivation of
error probability, we analyze in section V the achieved diversity
order. In section VI, we provide complexity and performance

simulation results. We conclude and present future work in
section VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a MIMO system with nt transmit and nr receive
antennas using spatial multiplexing scheme. The complex-valued
representation of the channel output is given by:

yc = Hcsc +wc (1)

where Hc ∈ Cnr×nt denotes the channel matrix of elements
drawn i.i.d. according to the distribution CN (0, 1) and assumed
perfectly known at the receiver. wc ∈ Cnr is the additive white
Gaussian noise of variance σ2Inr and sc is the transmitted vector
carved in a M-ary QAM signal constellation. We consider a
symmetric system i.e nt = nr. In order to obtain a lattice
representation of the channel output, we apply the complex-to-
real transformation to get the real-valued system given by:

y2nr×1 = H2nr×2nts2nt×1 +w2nr×1 (2)

This system is to be considered in the decoding process. When
a length-T Space-Time code is used, the channel output can
be written in the same form of (1) with the equivalent channel
matrix Heq given by:

Heq = HcΦ (3)

where Φ ∈ CntT×ntT corresponds to the coding matrix
of the underlying code [11]. For simplicity, given that both
uncoded and coded schemes result in a same real-valued lattice
representation, we consider in the remaining of this work the
spatial multiplexing scheme. Let n = 2nt.

A. ML Detection

In the coherent case where H is considered known at
the receiver side, ML decoder finds the information vector
s minimizing

ŝ = argmin
s∈An

∥ y −H s ∥2 (4)

where A represents the M-ary QAM constellation to which
belong the real and imaginary parts of information symbols.
This system can be resolved by using lattice decoders based
on tree-search algorithms [2]. To get the tree structure, a QR
decomposition is applied on the lattice generator matrix H.
Equation (4) is equivalent to:

ŝ = argmin
s∈An

∥ y′ −R s ∥2 (5)

2016 23rd International Conference on Telecommunications (ICT)

978-1-5090-1990-8/16/$31.00 ©2016 IEEE



where Q is an orthogonal matrix, R an upper triangular one
and y′ = Qty.

B. Block Division
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Fig. 1. Block division of the R matrix

We will consider a block division of matrix R to proceed to
a recursive block decoding. The considered block division is
depicted in Fig.1.
R1 ∈ Rp×p going to be decoded first is an upper triangular
matrix. R2 ∈ Rn−p×n−p an upper triangular matrix is going to
be decoded in the second stage. B ∈ Rn−p×p is a rectangular
feedback matrix. s(1) and s(2) are the corresponding symbol
vectors of size p and n− p respectively. Based on this division,
(5) can be rewritten as:

ŝ = argmin
(s(1),s(2))∈Ap×An−p

∥ y′ −R s ∥2

= argmin
(s(1),s(2))∈Ap×An−p

∥ y(2) −R2 s(2) −B s(1) ∥2 +

∥ y(1) −R1 s(1) ∥2 (6)

III. RELATED WORK

Reducing complexity while maintaining a good error perfor-
mance and full diversity has been the object of many studies in
the literature. We will focus on recursive signal set detection
based works. Two main approaches are studied here.
The first approach is based on the division of the channel
matrix in 2 blocks as in Fig.1. In [5] an ML decoding scheme
is performed on the first block of size p, then a Zero Forcing
Decision Feedback Equalizer (namely ZF-DFE) is applied to
the remaining system given the output of the first ML decoding
(i.e by subtracting the first ML output from the received signal).
It was shown that this scheme is able to increase the diversity
order for the worst sub-channel from 1 to p. An ordering scheme
could be also applied to give the best decoding to the worst
sub-channels, thus it is shown that an SNR gain equal to the
number of transmitting antennas can be obtained.
The second approach, Space-Time coded systems oriented and
compatible with sphere decoder [2], consists in splitting the
received signal into L ≥ 2 subsets each of cardinality λ. A

conditional maximization of the likelihood function with respect
to one signal set point given another is performed. Informally:

1) Exhaustive search for one sub-set.
2) Remove interference of all possible values of the first

sub-set from remaining L− 1 sub-sets.
3) Decode L− 1 sub-sets with a ZF decoder for each decoded

point of the first block.
4) Select optimal solution overall calculated solutions.

The choice of the signal set to decode first is crucial for the
performance of the algorithm i.e to guarantee a maximal desired
diversity order. Thus empirical [6–8] and analytical [9] set
selection criteria on the equivalent channel matrix are derived.
In [6] (and [7], [8]), authors examined the cases of Golden
Code [12] (and 3× 3, 4× 4 perfect codes [13] and any n× n
algebraic Space-Time code respectively). In these works, the
main set selection criteria considered are the determinant of
covariance matrices of the sub-channels. This quantity measures
the instantaneous SNR of the corresponding linear system and
thus should be large. Another criterion was also studied which is
the condition number of this covariance matrix which measures
the accuracy of the zero-forcing approximation and thus should
be small. Then, the ratio of these quantities should be maximized.
It was experimentally found that in the case of Golden Code,
the sub-channel whose condition number is the smallest has
the biggest determinant and thus a determinant based criterion
is sufficient. In Perfect Code case, the condition number based
criterion makes the performance slightly better and thus we
can obviate the need to compute it too, taking into account
the additional condition number computation complexity to be
added in this case.

In [9], inspired from the above mentioned works, authors
introduce two new low complexity decoders namely ACZF
(Adaptive Conditional Zero-Forcing)and ACZF-SIC(Adaptive
Conditional Zero-Forcing with Successive Interference Cancel-
lation) where they give 2 equivalent sufficient conditions based
on STBC characteristics to get full diversity with these decoders.
One sufficient condition is the full rank of at least one of the L
sub-matrices.

IV. THE PROPOSED RECURSIVE BLOCK DECODING

In this section we present the main result of the paper which
is semi-exhaustive recursive block decoding. In [9](Table 1), it
is shown that for some ST codes, decoding complexity is very
slightly reduced using the proposed recursive block decoder
compared to known ML decoding complexities of these codes.
This marginal gain is due to the exhaustive search performed
in the first step (decoding of first block).
Our proposed decoder solves this issue by reducing the number
of candidates kept in the first step compared to the exhaustive
search. In addition, it offers a flexibility on the diversity
order (impacting the overall complexity) by choosing a target
diversity order less or equal to the full diversity imposed in the
above mentioned works. The control of the diversity order is
obtained through the choice of decoding parameters (like: block
size, block order, list size or equivalently a stopping radius).
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Parameters such as SNR and constellation size are also taken
into account.
We divide the R matrix into 2 sub-blocks and we split,
accordingly, the n real information symbols contained in s
. Then, 4 steps are performed:

1) Generate a list containing the ML solution and some of
its neighborhoods as an output of the decoding of the first
block .

2) Subtract the interference of the decoded block (for each
list point) from the remaining system.

3) ML or ZF-DFE decoding of the second block for each
candidate of the list.

4) Select the solution that minimizes the overall ML metric
with respect to (4)

For the first stage, we propose 2 possibilities to generate the
list:

• by looking for all points inside a sphere centered on ML
solution adapted for a decoding using Sphere Decoder.

• by looking to construct a list of fixed size adapted for a
decoding using Stack Decoder.

The equivalence between a sphere radius r and the number of
constellation points inside this sphere was studied in [14]. Let
Np be the number of lattice points contained in this sphere
(R2 is the generator matrix of Λ ) and Ne be the effective
number of constellation points inside the sphere, we have:

r ≈
(Np × vol(Λ)

Vp

) 1
p

(7)

where: vol(Λ) = det(R2) and Vp is the volume of a unit radius
sphere in the real space Rp, Vp = π

p
2

p
2 !

.
The effective number of lattice points in the list is αA

p ×Np.
For example α4QAM = 3

2 , α16QAM = 3
4 and α64QAM = 3

8 .
Thus, L =

(
(αAr)p

π
p
2

p
2 !

)
/| detR2|.

An overview of the whole decoding scheme with an ML decoder
in the the second phase is depicted in Fig.2.

A modified version of a sequential decoder, for example
the SB-Stack decoder [15], could be used to generate these
candidates where first the optimal solution of the system y2 =
R2 s2+ z2 is found, then all the near-ML solution lying inside
the sphere of radius r are generated and stored to be expanded in
the second decoding stage. As depicted in Fig.2, these branches
represent the potential candidates among which the transmitted
vector could be found with high probability.

V. DIVERSITY ORDER ANALYSIS

In this section, we derive an upper bound of the Frame Error
Rate Pef . Note that at high SNR regime, a frame error is caused,
with high probability, by an error on one symbol. Thus,the
Symbol Error rate Pes can be approximated by Pes ! Pef/n
Notations:
Denote by:

ω

r

r Threshold on candidates’ cost
First stage: paths to list candidates

paths to ML candidates corresponding to one list point
transmitted vector

non examined paths

❄

❄

Block
size= p

Block
size=n− p

Fig. 2. Tree-based Decoding scheme overview

• s =
[
s(2), s(1)

]
the transmitted vector, as explained

in paragraph II-B where s(2) = [sn, sn−1 . . . sp+1] and
s(1) = [sp, sp−1, . . . s1].

• ŝ =
[
ŝ(2), ŝ(1)

]
the output of the decoder.

Also, denote by:

• s̃ the event that s was visited during the search i.e s belongs
to the set I of full paths metric-compared at the end of
the second stage.

• s̃(i) the event that s(i) was visited during the search, i =
{1, 2}.

• s̃c and s̃(i)
c

the opposite events of s̃ and s̃(i) respectively.

Then, the Frame Error Rate Pef = Pr(s ̸= ŝ) could be written,
using conditional probability rule, as:

Pef = Pr(s ̸= ŝ ∩ s̃) + Pr(s ̸= ŝ ∩ s̃c)

= Pr(s ̸= ŝ | s̃) Pr(s̃) + Pr(s ̸= ŝ | s̃c)︸ ︷︷ ︸
= 1

Pr(s̃c).

= Pr (s ̸= ŝ | s̃) Pr(s̃) + Pr(s̃c). (8)

It is clear that limρ→∞ Pr(s̃) = 1 where ρ is the instantaneous
SNR.
We start by deriving Pr (s ̸= ŝ | s̃). It is the probability that,
after having built our set I of couples

(
s̃′

(1)
, s̃′

(2)
)

and
compared their global metric with respect to the system in (6),
s doesn’t have the smallest metric. Thus, using union bound

2016 23rd International Conference on Telecommunications (ICT)



(UB):

Pr (s ̸= ŝ | s̃) = EREs

∑

s′ ̸=s
s′∈I

Pr
(
|y −Rs′|2 ≤ |y −Rs|2

)

(9)

We know that:

Pr
(
|y −Rs′|2 < |y −Rs|2

)
≤ Q

⎛

⎝

√
|R (s− s′)|2

2σ2

⎞

⎠ (10)

R entries |ri,i|2 are distributed according to χ2(2(n− i+ 1))
[16] for i = 1, . . . , n with a maximum degree of freedom=2n.
Using Chernoff bound for the Q-function in (10), we obtain
that:

ERQ

⎛

⎝

√
|R (s− s′)|2

2σ2

⎞

⎠ ≤ ER exp

(
− |R (s− s′)|2

4σ2

)

≤ 1(
1 + |s−s′|2

4σ2

)n ≤ 1(
1 +

d2
min
4σ2

)n

(11)

Then,

Pr (s ̸= ŝ | s̃) ≤ Es

∑

s′ ̸=s
s′∈I

1(
1 +

d2
min
4σ2

)n

≤ |I|(
1 +

d2
min
4σ2

)n = βρ−n (12)

where dmin is the Euclidean distance between nearest neighbors
in A and β a positive constant.
We derive now Pr(s̃):

Pr(s̃) = Pr
(
s̃ ∩ s̃(1)

)
+ Pr

(
s̃ ∩ s̃(1)

c)

︸ ︷︷ ︸
= 0

= Pr
(
s̃ | s̃(1)

)
Pr

(
s̃(1)

)
.

Given that s̃ = s̃(1)∩ s̃(2), then Pr
(
s̃ | s̃(1)

)
= Pr

(
s̃(2) | s̃(1)

)
.

Thus:

Pr (s̃) = Pr
(
s̃(2) | s̃(1)

)
Pr

(
s̃(1)

)
. (13)

We derive Pr(s̃(1)
c
) = 1 − Pr(s̃(1)). Recall that Pr(s̃(1)

c
) is

the probability that the metric associated to s(1), with respect
to the 1st system in (6), falls over a certain fixed threshold r.

Pr(s̃(1)
c
) = ER1 Pr(s

(1))
∑

s1∈Ap

Pr(|y(1) −R1s
(1)|2 ≥ r2)

= Pr(|z(1)|2 ≥ r2). (14)

Since |z(1)|2
σ2 is distributed according to the χ2 (p) , then:

Pr(s̃(1)
c
) = Pr

(∣∣z(1)
∣∣2

σ2
≥ r2

σ2

)

=

∞∫

r2

σ2

f(x)dx =
Γ(p2 ,

r2

2σ2 )

Γ(p2 )
(15)

where f is the pdf of χ2 (p) and Γ(a,x)
Γ(a) is the normalized upper

Gamma function.

It remains now only the second term in (13): Pr(s̃(2) | s̃(1)).
Having kept a set I1(|I1| < |A|p) of p-length paths for next
decoding stage, this quantity depends on the decoding scheme
that it is going to be used in the decoding of the second system
y(2) = R2 s(2) +Bs(1) + z(2) in (6) (after a |I1| times SIC
operations ).
We propose to study in V-A the case of an ML decoder chosen
to be Sphere Decoder (SD) and in V-B the case of sub-optimal
decoder chosen to be Zero-Forcing Decision Feedback Equalizer
(ZF-DFE).

A. FER Analysis for ML Decoding in the 2nd Stage

In this section, we provide the analytical proof that any
diversity order κ ∈ [1, . . . n] is achievable.
For ease of calculations, we derive Pr

(
s̃(2)

c
| s̃(1)

)
= 1 −

Pr
(
s̃(2) | s̃(1)

)
.

Pr
(
s̃(2)

c
| s̃(1)

)
is the probability that, after a SIC operation

of s(1), s(2) is not the chosen output of the ML decoder i.e
doesn’t have the smallest metric among all its neighbors. Then,
using the Union Bound (UB):

Pr
(
s̃(2)

c
| s̃(1)

)
≤ ER2Es(2)

∑

s′(2) ̸=s(2)

Pr(|y(2) −R2s
′(2)|2

< |y(2) −R2s
′(2)|2) (16)

Similarly to (11), R entry |rn,n|2 is distributed according to
χ2(2n). Then:

ER2

(
Pr

(
|y(2) −R2s

′(2)|2 < |y(2) −R2s
′(2)|2

))

≤ 1(
1 +

|s′(2)−s(2)|2
4σ2

)n ≤ 1(
1 +

d2
min
4σ2

)n (17)

Hence (16) could be written as:

Pr
(
s̃(2)

c
| s̃(1)

)
≤ Es(2)

∑

s′(2) ̸=s(2)

1(
1 +

d2
min
4σ2

)n

≤ |A|n−p

(
1 +

d2
min
4σ2

)n (18)
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Now from (13),

Pr (s̃c) = 1− Pr (s̃)

= 1−
(
1− Pr

(
s̃(1)

c))(
1− Pr

(
s̃(2)

c
| s̃(1)

))

≈ Pr
(
s̃(1)

c)
+ Pr

(
s̃(2)

c
| s̃(1)

)
(19)

since Pr
(
s̃(1)

c)
and Pr

(
s̃(2) | s̃(1)

)
are small at high SNR.

Combining (12), (19), (18) and (15), the FER in (8) is upper-
bounded by:

Pef ≤
Γ(p2 ,

r2

2σ2 )

Γ(p2 )
+

|I|+ |A|n−p

(
1 +

d2
min
4σ2

)n (20)

Equation (20) shows that the diversity order that could be
achieved by this decoding scheme is controlled by the first term
given that the second one achieves full diversity. Therefore, to
guarantee an overall diversity order of at least κ, the first term
(function of the block size p, the noise term σ2 and the metric
threshold r) should decrease at the order of σ2κ. This goes
back, for a given fixed high SNR (or small σ2) and block size
p, to find the minimum threshold r that satisfies:

Γ(p2 ,
r2

2σ2 )

Γ(p2 )
≤ δσ2κ (21)

for some positive constant δ that controls the SNR gain. This
inequality on r is solved numerically in simulations with a
margin of error as small as possible.

B. FER Analysis for ZF-DFE Decoding in the 2nd Stage

In this section, we show that the overall diversity order
provided by this decoding scheme for block decoding where
n− p ≥ 2 is limited by the sub-optimal decoding in the second
stage i.e κmax = 1.
Same as in V-A, we derive Pr

(
s̃(2)

c
| s̃(1)

)
= 1 −

Pr
(
s̃(2) | s̃(1)

)
in the case where a ZF-DFE decode with no

channel ordering is used for the 2nd decoding stage given that
s(1) was visited(i.e decoding inside the framed sub-tree in Fig.2).
Now the ZF-DFE decoder is looking for the estimate ŝ(2) with
respect to the following system:

y(2) = R2s
(2) +Bs(1) + z(2) (22)

After SIC operation using the transmitted sub-vector s(1) (i.e
no error propagation), the system is rewritten as:

y′(2) = y(2) −Bs(1) = R2s
(2) + z(2) (23)

Given assumptions on noise statistics and that no channel
ordering is performed, ZF-DFE decoder, applied on such system,
is known to provide a maximum diversity order of κmax = 1
which controls then the overall diversity order (even if an
exhaustive search in the first stage is performed).

Note that if n− p = 1 i.e only one symbol left to detect, the
ZF-DFE decoder coincides with ML decoder and thus diversity
order κ follows the same rule as in previous section.

VI. SIMULATION RESULTS

The proposed decoder has been validated by numerical
simulations considering spatial multiplexing for nt = nr = 4
using a 4-QAM modulation. Block dimensions are p = n−p = 4
(n = 8 in real-valued system). We provide here numerical results
evaluating the Symbol Error Rate SER and the average decoding
complexity(computed as the overall number of multiplications)
averaging over 2× 106 channel realizations.
We compare diversity order in Fig.3 and complexity in Fig.4 of
Sphere Decoder with 4 possible configurations of our decoder
scheme by varying the minimum target diversity order κ and
the SNR gain factor δ.
In the first scenario (black line), we set the target diversity κ = 4
(i.e full diversity). We observe that this diversity order is indeed
achieved with a noticeable complexity reduction compared to
the SD.
In the second and third scenario, we set the minimum target
diversity κ = 2 with 2 variants for SNR gain factor δ. We
validate in Fig.3 that SER curves (blue and magenta lines) have
a same slope of 2 with different SNR gains. The last scenario(in
green) depicts the case where the minimum target diversity
order is set to κ = 1.
We can observe that at low SNR regime, the second,third and
fourth scenarios (blue, magenta and green curves) have higher
complexity than the first considered scenario. This behavior is
due to the choice, at this regime, of a variable delta function of
SNR in the first scenario, which seems to be the best way for
the choice of delta. This behavior could be explained by the fact
that for small values of ρ, δρ−n → 1 which gives a too small
radius (due to properties of normalized upper gamma function),
thus no lattice point could be found, causing the algorithm to
restart and increase complexity.

Fig. 3. Symbol Error Rate for nt = nr = 4 using 4-QAM constellation and
spatial multiplexing
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Fig. 4. Total computational complexity for nt = nr = 4 using 4-QAM
constellation and spatial multiplexing

VII. CONCLUSION

This work was dedicated to semi-exhaustive recursive block
decoding implementable in linear communication systems
including MIMO systems. A complexity reduction coupled
with a flexibility on desired diversity order, between minimum
and full diversity for a given system is achieved. In this work,
the case of 2 blocks of the same size was studied, in future
work we are considering, among others, the case of division into
more than 2 sub-blocks with different sizes. Also, we propose to
combine our algorithm based on ZF-DFE decoder in 2nd stage
with block division and ordering based on the determinant of the
covariance matrices of blocks. Then, having as input the R, for
all block division sizes p ∈ [2, .., n− 1], the algorithm compares
the determinants of G1 = R1

HR1 and G2 = R2
HR2 and

chooses the block having the largest determinant to be the 1st

block to be decoded. It was shown in prior art that based on
this criteria, the ZF-DFE is able to achieve full diversity.
Simulations are reported for an extended version of this paper.
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