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Abstract— In this paper, we propose a low-complexity method
to perform the incomplete decoding needed at relays for the
Incomplete Decode-and-Forward. The decoding problem is con-
sidered as a diophantine approximation search. We propose two
modifications of Cassels’ algorithm to approximate an element
x ∈ Q(i, θ) by a linear combination a + θb of symbols taken in
a Z-PAM. Simulation results show that the use of diophantine
approximation induces only a small loss in performance, while
reducing significantly the processing complexity.

I. INTRODUCTION

Cooperation has been developed in order to exploit space-
time diversity even when small terminals are not equipped
with several antennas: different nodes in the network cooperate
in order to form a MIMO system array [1], [2]. Cooperation
protocols have been classified in three main families: amplify-
and-forward (AF), decode-and-forward (DF), and compress-
and-forward (CF).

DF protocols require more processing than AF ones, as
the signals have to be decoded at relay before being for-
warded. However, if signals are correctly decoded at relays,
performance are better than those of AF protocols, as noise is
deleted. Moreover, DF protocols can be more performant in
some scenarios. For example, it has been proven in [3] that in
a multihop context it is necessary to use a DF protocol at some
relays to regenerate the signals. A full AF strategy would add
more noise at each hop and make signals no longer decodable.

In [4], we proposed the Incomplete DF protocol providing
both full rate of 1 symbol per channel use and full diversity
order (K+1) (where K is the number of relays). The main idea
of this protocol is to perform only an incomplete decoding at
the relays. Based on the structure of the distributed TAST code,
a two-step decoding method was defined, allowing to reformu-
late the problem as a search in two-dimension, whatever the
number of relays. In [4] the incomplete decoding is performed
using an exhaustive search. However, this exhaustive search
induces a high processing complexity.

In [5], authors proposed to use a diophantine approximation
to decode the Golden code in a 2 × 1 MISO channel. The
difficulty is then the rank deficiency of the system. In the
Incomplete DF protocol, decoding at relay also suffers from
a rank deficiency. So, based on the same idea, we propose
to approximate coded symbols at relay using diophantine
approximation algorithms. We present an adaptation of the
well-known Cassels’ algorithm for approximating an element

x ∈ Q(i, θ) with θ ∈ R by a linear combination a+θb, where
a and b are symbols taken in a Z-PAM. In order to combine
diophantine approximation with the two-step decoding pro-
posed in [4], we also propose an other modification of this
algorithm to the case where θ = ei π

4 . Simulation results show
that the use of a diophantine approximation at relay induces
only a small loss in performance, highly counterbalanced by
the decrease of processing complexity.

II. PRELIMINARIES

A. Channel model

We consider a wireless network with N + 1 sources and
one destination. As the channel is shared in a TDMA manner,
each user is allocated a different time slot, and the system can
be reduced to a relay channel with one source, N relays and
one destination. The N + 1 sources will play the role of the
source in succession, while the others will be used as relays.

The channel links are assumed to be Rayleigh distributed
and slow fading, so their coefficients can be considered as con-
stants during the transmission of at least one frame. Besides,
we suppose a symmetric scenario, i.e. all the channel links
are subject to the same average signal-to-noise ratio (SNR). A
uniform energy distribution is assumed.

Considered terminals are half-duplex; they cannot receive
and transmit at the same time. They are equipped with only
one antenna; the MIMO case is not considered in this work.
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Fig. 1. System model : relay channel with one source, N relays and one
destination

In the next sections, notation given on Figure 1 will be
used. The channel coefficient of the link between source S
and destination D is g0, the one between source S and relay
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RSn, n ∈ {1, . . . , N}, is hn and the one between relay RSn
and destination D is gn.

There is no channel state information (CSI) at the source,
the destination is supposed to know all the channel coefficients
gn, which is necessary for the decoding of the information, and
each relay RSn is assumed to know its corresponding source-
relay channel coefficient hn.

B. Incomplete DF protocol

The IDF protocol has been proposed in [4]. Its transmission
frame is very similar to the one of the NAF protocol [6].
During a first phase, the source broadcasts N symbols that
are received by all the N relays. During the second phase,
the source keeps transmitting and each relay n ∈ {1, ..., N}
decodes and forwards the nth symbol received in the first
phase.

This strategy allows to transmit at a rate of 1 symbol
per channel use (pcu) and achieves full diversity N + 1. Its
diversity-multiplexing gain tradeoff (DMT) is the same as the
one achieved by the NAF protocol:

d∗(r) = (1 − r)+ + N(1 − 2r)+ (1)

In order to reach this theoretic DMT, optimal space-time
codes such as perfect [7], [8] have to be used in a distributed
manner. Coded symbols are then elements of the ring of
integers OK of K, a cyclic extension field of Q(i) of dimension
22N , i.e. they are linear combinations of 2N information
symbols each. Thus the challenge of this protocol lies in the
decoding at relays. Indeed, coded symbols containing a total
of 4N2 information symbols have to be decoded from only
2N2 received signals.

The main idea of the Incomplete DF protocol is to estimate
received signals as elements xk ∈ OK, k ∈ {1, . . . , 2N},
without having to decode the information symbols sj , j ∈
{1, . . . , 4N2}. Indeed, the knowledge of the sj is not neces-
sary at relays, as soon as they know the signals xk that have
to be forwarded.

Decoding at destination can be performed by using ML
lattice decoders such as a Schnorr-Euchner [9] or a sphere
decoder [10].

C. Definition of a diophantine approximation

There exist two types of diophantine approximation.

Definition 1: A homogeneous diophantine approximation
of ζ ∈ R is a fraction p

q ∈ Q such that |ζ − p
q | or D(p, q) =

|qζ − p| is small.

Definition 2: An inhomogeneous diophantine approxima-
tion of ζ ∈ R, given β ∈ R, is a fraction p

q ∈ Q such that
D(p, q) = |qζ − p − β| is small.

Definition 3: A pair (p, q) ∈ N2 is a best (homogeneous
or inhomogeneous) diophantine approximation if ∀(p′, q′) ̸=
(p, q) ∈ N2, we have:

q′ ≤ q ⇒ D(p′, q′) ≥ D(p, q).

Cassels’ algorithm has been proposed in [11] and explained
in details in [12]. Given ζ, β ∈ R, this algorithm enumerates
all best inhomogeneous approximations.

III. ONE-RELAY CASE

In this section, we suppose that the source is helped by
only one relay RS. The Incomplete DF protocol can then be
implemented with a 2 × 2 distributed STBC. We propose to
use the distributed Golden code.

The Golden code is an algebraic code designed for a 2× 2
MIMO system in [13] based on the cyclic division algebra of
dimension 2, A = (Q(i, θ)/Q(i), σ, γ), where θ = 1+

√
5

2 is
the Golden number, σ : 1+

√
5

2 )−→ 1−√
5

2 and γ = i.
A codeword is given by

X =
[

α(s1 + θs2) α(s3 + θs4)
iσ(α)(s3 + σ(θ)s4) σ(α)(s1 + σ(θ)s2)

]

where the sj , j ∈ {1, . . . , 4} are the information symbols
taken in a QAM constellation and α = 1+i−iθ. The elements
of the code matrix are in OK the ring of integers of the number
field K = Q(i, θ). Let’s note them x1 = s1 + θs2 and x2 =
s3 + θs4. The codeword is then:

X =
[

αx1 αx2

iσ(α)σ(x2) σ(α)σ(x1)

]
. (2)

The transmission frame is represented in Figure 2.

S

D

first phase second phase

RS yr
1 yr

2

y2y1 y3 y4

αx1 αx2

α̃x1 α̃x2

iσ(α)σ(x2) σ(α)σ(x1)

Fig. 2. Transmission frame of Incomplete DF for one relay implemented
with a distributed Golden code. Sent signals are represented in continuous
boxes and received signals in dashed boxes.

Elements x1 and x2 both contain two information symbols.
They have to be recovered respectively from the received
signals yr

1 and yr
2.

In [4], an exhaustive decoding is performed at relays. This
strategy induces a high processing complexity. In this paper,
we propose to reduce this decoding complexity by using a
diophantine approximation of the xk, k ∈ {1, 2}.

Diophantine approximation only deals with real numbers.
As in this case θ ∈ R, diophantine approximation perfectly
fits to the decoding of the elements of the Golden codeword.
The problem only has to be divided into its real and imaginary
parts. Let’s note

ỹr
1 =

yr
1√ρh1α

and ỹr
2 =

yr
2√ρh2α

.

Given (θ, Re(ỹr
1)) ∈ R2, we want to find

(Re(s1), Re(s2)) ∈
√

M -PAM such that

d = |Re(ỹr
1) − Re(s1) − θRe(s2)| (3)
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is minimized. Using the notation of definition 2, this prob-
lem can be identified with an inhomogeneous diophantine
approximation where ζ ↔ −θ, p ↔ Re(s1), q ↔ Re(s2)
and β ↔ −Re(ỹr

1). However, Re(s1) and Re(s2) have to be
decoded in a

√
M -PAM. Cassels’ algorithm thus has to be

modified so as to provide (p, q) in a finite set. A change of
basis provides (p, q) in a Z-PAM.

Input: y, θ, Z
Output: X̂
β = −(y + (Z + 1)(1 + θ))/2;1

α = −θ;2

η0 = α; η1 = −1; ζ1 = −β;3

p0 = 0; p1 = 1; P1 = 0;4

q0 = 1; q1 = 0; Q1 = 0;5

n = 2;6

while ηn−1 ̸= 0 ∧ ζn−1 ̸= 0 ∧ Qn−1 ≤ Z do7

an = ⌊− ηn−2

ηn−1
⌋;8

pn = pn−2 + anpn−1;9

qn = qn−2 + anqn−1;10

ηn = ηn−2 + anηn−1;11

if Qn−1 ≤ qn−1 then12

bn = ⌊− ζn−1−ηn−2

ηn−1
⌋;13

Pn = Pn−1 + pn−2 + bnpn−1;14

Qn = Qn−1 + qn−2 + bnqn−1;15

ζn = ζn−1 + ηn−2 + bnηn−1;16

else17

Pn = Pn−1 − pn−1;18

Qn = Qn−1 − qn−1;19

ζn = ζn−1 − ηn−1;20

end21

n = n + 1;22

end23

P = 2Pn − (Z + 1);24

Q = 2Qn − (Z + 1);25

X̂ = P + θQ;26
Algorithm 1: Modified Cassels’ algorithm for decoding
symbols in a Z-PAM, with θ ∈ R

The modified Cassels’ algorithm is given in Algorithm 1.
The constraint on Qn−1 on line 7 allows to restrict the search
to a finite set {1, . . . , Z}. When Qn−1 > Z , the computation
is stopped. The change of basis is done on line 1 and the
reverse on lines 24 and 25.

The same processing is done to decode the imaginary part
of the first coded symbol, as well as the real and imaginary
parts of the second coded symbol.

The incomplete decoding using a diophantine approxima-
tion is not optimal. However, it allows a considerable drop of
the decoding complexity at the relay side. Indeed, exhaustive
decoding has a complexity order M2 that can be easily reduced
to M by separating the real and imaginary parts of the signal.
When running the modified Cassels’ algorithm for different
size of constellation, we remark that it requires an average
of 3 iterations for a BPSK, 4 iterations for a 4-PAM and 8

iterations for a 16-PAM. Based on these results, we conjecture
that the average number of iterations of the algorithm is 2

√
Z

for a Z-PAM. The processing complexity of the diophantine
approximation is thus of the order

√
Z = 4

√
M .

IV. TWO-RELAY CASE

In this section, we suppose that the source is helped with
two relays RS1 and RS2. The Incomplete DF protocol has to
be implemented with a 4 × 4 distributed STBC. We propose
to use a distributed TAST code. Such codes have a vanishing
determinant and so do not achieve the DMT. However, we will
show in the following that this drawback is counterbalanced by
their code structure which allows a lower complexity decoding.

TAST codes, introduced in [14], are layered space-time
codes. In this paper, we use the TAST code constructing
using the cyclotomic field K = Q(i, θ), where θ = ei π

8 , the
generator of the Gallois group σ : θ )−→ iθ and φ = ei π

8 . The
codeword is

X =

⎡
⎢⎢⎣

x1 x2 x3 x4

φσ(x4) σ(x1) σ(x2) σ(x3)
φσ2(x3) φσ2(x4) σ2(x1) σ2(x2)
φσ3(x2) φσ3(x3) φσ3(x4) σ3(x1)

⎤
⎥⎥⎦ ,

where, ∀k ∈ {1, . . . , 4}, xk = s4k−3 + θs4k−2 + θ2s4k−1 +
θ3s4k.

Elements x1, x2, x3 and x4 ∈ OK and their conjugates
have to be recovered from the signals yrj

1 to yrj
8 received at

the relay RSj , j ∈ {1, 2}.

A. Two-step decoding
A method based on the structure of the TAST code is

proposed in [4] to reduce the decoding complexity at relays.
A slight modification can reduce the exhaustive decoding in a
constellation of M4 elements to two exhaustive decodings in
a constellation of only M2 elements.

We can notice that x1 and its second conjugate σ2(x1) can
be rewritten in the form:

x1 = (s1 + θ2s3) + θ(s2 + θ2s4)
σ2(x1) = (s1 + θ2s3) − θ(s2 + θ2s4)[

x1

σ2(x1)

]
=

[
1 θ
1 −θ

]

︸ ︷︷ ︸
M

[
z1

z2

]
, (4)

where z1 = (s1 + θ2s3) and z2 = (s2 + θ2s4) are elements of
the ring of integers of the field Q(ei π

4 ) of dimension 2 over
Q(i). As 1√

2
M is a rotation matrix, a simple multiplication

by M† allows to obtain z1 and z2 from x1 and σ2(x1).
In order to take advantage of this property, the idea is that

the source sends the first and third lines of the codeword matrix
during the first phase of the transmission and the second and
fourth lines during the second phase of the transmission.

The incomplete decoding at relays is then done in two steps.
First we compute the matrix product

[
z′1
z′2

]
=

1
2
M†

⎡
⎣

yrk
1√
ρh1

yrk
6√ρh1

⎤
⎦ .
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Then we decode elements z1 and z2 of the ring of integers
of Q(ei π

4 ) in an exhaustive way as in [4]. Finally x1 and its
conjugate σ2(x1) can be easily deduced from (4).

This trick allows to decrease considerably the diversity. In-
deed, the exhaustive search is now performed in a constellation
of M2 elements instead of M4.

B. Diophantine approximation with θ = ei π
4

In order to reduce the complexity even more, we want to
combine the advantages of the two-step decoding method and
the diophantine approximation. The problem is that θ is not a
real number anymore.

However, we can show that if θ = ei π
4 the decomposition in

real and imaginary part is more complex, but the diophantine
approximation still can be used with a slight modification of
the given algorithm. Thus the diophantine approximation can
also be applied when using a distributed TAST code.

A coded symbol is in the form

sc = s1 + θs2

where s1 and s2 are complex information symbols.

sc = R(s1) + iI(s1) +
1√
2
(1 + i) (R(s2) + iI(s2))

= R(s1) +
1√
2
(R(s2) − I(s2))

+ i
[
I(s1) +

1√
2

(I(s2) + R(s2))
]

The decomposition of the coded symbol into real and
imaginary parts leads to numbers of the form n = a + 1√

2
b

where a belongs to the Z-PAM, but b is the sum of two
elements of the Z-PAM. The modified Cassels’ algorithm is
thus modified again to respect this constraint (see Algorithm
2).

Because of the real and imaginary decomposition, θ is
replaced by 1√

2
on lines 1, 2 and 26. Moreover, as the second

element of the approximation is a sum of symbols taken in a
Z-PAM, the search interval has to be changed. This is done
on lines 1, 7 and 25.

The exhaustive search has a complexity of the order M4.
The two-step decoding method allows to reduce this complex-
ity order to M2. Finally, the combination with the diophantine
approximation approach reduces the complexity order to 4

√
M .

V. SIMULATION RESULTS

Simulations have been run for both the one-relay and two-
relay cases.

In the one-relay case, the Incomplete DF has been im-
plemented with the distributed Golden code. Both exhaustive
decoding and diophantine approximation are considered at the
relay.

Figure 3 represents the performance obtained for both
methods. The set of upper curves have been simulated with
a spectral efficiency of 4 bits per channel use, the other set
with 2 bits pcu. Diophantine approximation at relay performs

Input: y, Z
Output: X̂
β = −(y + (Z + 1) + 2Z 1√

2
))/2;1

α = − 1√
2

;2

η0 = α; η1 = −1; ζ1 = −β;3

p0 = 0; p1 = 1; P1 = 0;4

q0 = 1; q1 = 0; Q1 = 0;5

n = 2;6

while ηn−1 ̸= 0 ∧ ζn−1 ̸= 0 ∧ Qn−1 ≤ 2Z − 1 do7

an = ⌊− ηn−2

ηn−1
⌋;8

pn = pn−2 + anpn−1;9

qn = qn−2 + anqn−1;10

ηn = ηn−2 + anηn−1;11

if Qn−1 ≤ qn−1 then12

bn = ⌊− ζn−1−ηn−2

ηn−1
⌋;13

Pn = Pn−1 + pn−2 + bnpn−1;14

Qn = Qn−1 + qn−2 + bnqn−1;15

ζn = ζn−1 + ηn−2 + bnηn−1;16

else17

Pn = Pn−1 − pn−1;18

Qn = Qn−1 − qn−1;19

ζn = ζn−1 − ηn−1;20

end21

n = n + 1;22

end23

P = 2Pn − (Z + 1);24

Q = 2Qn − 2Z;25

X̂ = P + 1√
2
Q;26

Algorithm 2: Modified Cassels’ algorithm for θ = ei π
4

slightly worser than the exhaustive decoding. This is explained
by the fact that it is not an optimal decoding. However, this
small loss in performance, only 0.5 dB, is counterbalanced by
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Fig. 3. Performance of the IDF protocol in the one-relay case with exhaustive
search or diophantine approximation at relay. Frame error rate is plotted as
function of the SNR at spectral efficiencies of 2 and 4 bits per channel use.
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Fig. 4. Performance of the IDF protocol in the two-relay case with exhaustive
search or diophantine approximation at relays. Frame error rate is plotted as
function of the SNR at spectral efficiencies of 2 and 4 bits per channel use.

a much lower decoding complexity decreasing from M2 to
4
√

M .
In the two-relay case, the Incomplete DF protocol has

been implemented with the distributed 4 × 4 perfect and
TAST codes. When using the distributed perfect code, only
exhaustive search is possible at relays. When using the dis-
tributed TAST code, both exhaustive search and diophantine
approximation are considered.

Figure 4 represents the performance of the IDF protocol
obtained by simulation. On can see that the use of the TAST
code instead of a perfect code does not induce a big loss in
performance, even if the TAST code does not respect the NVD
property unlike the perfect code. Moreover, the diophantine
approximation causes less than 1 dB loss compared to the
exhaustive search, which makes the total loss equal to 1 dB
compared to the distributed perfect code with an exhaustive
decoding at relays.

Ideally the Incomplete DF would be the least complex and
more performant if used with a distributed STBC offering both
a structure allowing the two-step decoding and θ ∈ R for a
simple diophantine approximation.

VI. CONCLUSION

In this paper, we considered the Incomplete DF protocol
previously proposed in [4]. This protocol is based on a
incomplete decoding at relays, which was originally performed
by an exhaustive search. This last method induces a high
processing complexity, increasing with the number of relays
and the size of the constellation. In this work, we showed that
the decoding problem at relays can be reformulated as a dio-
phantine approximation problem. We proposed a modification

of the well-known Cassels’ algorithm to the approximation of
an element of Q(i, θ), with θ ∈ R, by a linear combination
a + θb of two elements taken in a Z-PAM. This modified
algorithm is used in the one-relay case, to decode elements of
the distributed Golden code. This strategy allows a drop of the
processing complexity from the order M2 to the order 4

√
M

only.
In [4], a method based on the structure of TAST codes

was proposed to reduce the processing complexity when the
number of relays increase. In order to combine this method and
the diophantine approximation approach, an other adaptation
of Cassels’ algorithm is proposed with θ = ei π

4 . In the two-
relay case, the combination of these two strategies provides a
decrease in processing complexity from the order M4 to the
order 4

√
M only.

Simulations show that the diophantine approximation at
relay induces only a small loss in performance However, this is
a low price for an important drop of the processing complexity.

REFERENCES

[1] A. Sendonaris, E. Erkip, and B. Aazhang, “User Cooperation Diversity.
Part I. System Description,” IEEE Trans. Commun., vol. 51, no. 11, pp.
1927–1938, November 2003.

[2] ——, “User Cooperation Diversity. Part II. Implementation Aspects and
Performance Analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp.
1939–1948, November 2003.

[3] S. Yang and J.-C. Belfiore, “Diversity of MIMO multihop relay chan-
nels,” IEEE Trans. Inform. Theory, August 2007, submitted.

[4] C. Hucher, G. Rekaya-Ben Othman, and A. Saadani, “A New Incomplete
Decode-and-Forward Protocol,” in IEEE Wireless Communications and
Networking Conference, March-April 2008, pp. 565–569.

[5] S. Howard, S. Sirianunpiboon, and A. Calderbank, “Fast decoding of the
golden code by diophantine approximation,” Sept. 2007, pp. 590–594.

[6] K. Azarian, H. E. Gamal, and P. Schniter, “On the achievable diversity-
multiplexing tradeoff in half-duplex cooperative channels,” IEEE Trans.
Inform. Theory, vol. 51, no. 12, pp. 4152–4172, December 2005.

[7] F. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo, “Perfect Space-
Time Block Codes,” IEEE Trans. Inform. Theory, vol. 52, no. 9, pp.
3885–3902, September 2006.

[8] P. Elia, K. Kumar, S. Pawar, P. Kumar, and L. Hsiao-Feng, “Explicit
Space-Time Codes Achieving the Diversity-Multiplexing Gain Trade-
off,” IEEE Trans. Inform. Theory, vol. 52, no. 9, pp. 3869–3884,
September 2006.

[9] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search
in lattices,” IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2201–2214,
August 2002.

[10] E. Viterbo and J. Boutros, “A Universal Lattice Code Decoder for Fading
Channels,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1639–1642,
July 1999.

[11] J. Cassels, An Introduction to Diophantine Approximation. Cambridge
University Press, 2005.

[12] I. Clarkson, “Approximation of linear forms by lattice points with ap-
plications to signal processing,” Ph.D. dissertation, Australien National
University, 1997.

[13] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The Golden Code: A 2x2
Full-Rate Space-Time Code with Non-Vanishing Determinants,” IEEE
Trans. Inform. Theory, vol. 51, no. 4, pp. 1432–1436, April 2005.

[14] H. E. Gamal and M. O. Damen, “Universal Space-Time Coding,” IEEE
Trans. Inform. Theory, vol. 49, no. 5, pp. 1097–1119, May 2003.

459


