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Abstract— In this paper, we present the Golden code for a 2×2
MIMO system. This is a full-rate 2×2 linear dispersion algebraic
space-time code with unprecedented performance based on the
Golden number 1+

√
5

2
.

Index Terms— Number fields, Cyclic Division Algebras, Space-
Time Lattices

I. INTRODUCTION

FUll rate and full diversity codes for the 2 × 2 coherent
MIMO systems, were first constructed in [1], using num-

ber theoretical methods. This approach was later generalized
for any number of transmit antennas M [2], [3], [4]. The
above constructions satisfy the rank criterion and attempt to
maximize, for a fixed signal set S, the coding advantage,
[5]. A general family of 2 × 2 full-rank and full-rate linear
dispersion space-time block codes (LD-STBC) is given in [6],
[7], based on cyclic division algebras.

Let K = Q(θ) be a quadratic extension of Q(i), we define
the infinite code C∞ as the set of matrices of the form

C∞ =
{
X =

[
a + bθ c + dθ

γ(c + dθ) a + bθ

]
: a, b, c, d ∈ Z[i]

}
.

where γ ∈ Z[i] is a number carefully chosen [6], [7]. C∞ is
clearly a linear code, i.e., X1 + X2 ∈ C∞ for all X1,X2 ∈
C∞. The finite code C is obtained by limiting the information
symbols to a, b, c, d ∈ S ⊂ Z[i], where we assume the signal
constellation S to be a 2b–QAM, with in-phase and quadrature
components equal to ±1,±3, . . . and b bits per symbol.

The code C∞ is a discrete subset of a cyclic division algebra
over Q(i), obtained by selecting γ ∈ Z[i] and γ �= NK/Q(i)(x)
for any x ∈ K [6], [7]. A division algebra naturally yields
a structured set of invertible matrices that can be used to
construct square LD-STBC, since for any codeword X ∈ C∞
the rank criterion is satisfied as det (X) �= 0.

We define the minimum determinant of C∞ as

δmin (C∞) = min
X∈C∞,X�=0

| det(X)|2 (1)

and the minimum determinant of the finite code C as

δmin (C) � min
X1,X2∈C,X1 �=X2

| det(X1 − X2)|2

≥ 16δmin (C∞) (2)
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Minimum determinants of C∞ in all previous constructions
[1], [2], [3], [4], [7] are non-zero, but vanish as the spectral
efficiency b of the signal constellation S is increased. This
problem appears because transcendental elements or alge-
braic elements with a too high degree are used to construct
the division algebras. Non-vanishing determinants may be
of interest, whenever we want to apply some outer block
coded modulation scheme, which usually entails a signal set
expansion, if the spectral efficiency has to be preserved.

As explained in the following, in order to obtain energy
efficient codes we need to construct a lattice MZ[i]2, a rotated
version of the complex lattice Z[i]2, where M is a complex
unitary matrix, so that there is no shaping loss in the signal
constellation emitted by the transmit antennas. This additional
property was never considered before and is the key to the
improved performance of our code.

Here we find the Golden Code, a code with non-vanishing
δmin outperforming all previous constructions. It is interesting
to notice that, for this code, δmin does not depend on the size
of the signal constellation.

After paper submission, the authors became aware that a
code isomorphic to the Golden code was independently found
by [8] and [9] by analytical optimization. In [8], it is shown
that this code achieves the diversity-multiplexing gain tradeoff
[10]. The algebraic approach given here sheds a totally new
light over such a code and opens the way to extension to
MIMO systems with a higher number of antennas [11].

II. THE GOLDEN CODE

We first illustrate the construction of the Golden Code,
which is related to the Golden number θ = 1+

√
5

2 and yields
the best performance. We assume the reader is familiar with
the basic definitions in algebraic number theory, for which we
suggest [12], [13], [14].

Consider K = Q(i,
√

5) = {a + bθ|a, b ∈ Q(i)} as a
relative quadratic extension of Q(i), with minimal polynomial
μθ(X) = X2−X−1. Denote by θ and θ̄ = 1−θ = 1−√

5
2 , the

two roots of the minimal polynomial. Let OK = Z[i][θ] denote
the ring of integers of K, with integral basis BK = {1, θ}. We
recall that for any algebraic integer z = a + bθ ∈ OK, with
a, b ∈ Z[i] (Gaussian integers), the relative norm is

NK/Q(i)(z) = (a + bθ)(a + bθ̄) = a2 + ab − b2 ∈ Z[i] (3)

Let L = {a + b i + c θ + d iθ | a, b, c, d ∈ Q} be the
corresponding absolute extension of K over Q, with signature
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(r1, r2) = (0, 2), ring of integers OL and integral basis
BL = {1, i, θ, iθ}.1 The relative discriminant of K is dK = 5,
while the absolute discriminant of L is dL = 24 · 52.

In order to obtain energy efficient codes we need to con-
struct a complex lattice MZ[i]2, where M is a complex
unitary matrix, so that there is no shaping loss in the signal
constellation. This lattice will derive as an algebraic lattice
from an appropriate relative ideal of the ring of integers
OK. The complex lattice MZ[i]2 can equivalently be seen
as a rotated Z4–lattice: RZ4, R being an orthogonal matrix,
obtained from an ideal of OL [13].

A necessary condition to obtain RZ4 is that there exists an
ideal IL ⊆ OL of norm 5. In fact, the lattice Λ(OL) has fun-
damental volume equal to 2−r2

√|dL| = 5 and the sublattice
Λ(IL) has fundamental volume equal to 2−r2

√|dL|N(IL) =
25, where the norm of the ideal N(IL) is equal to the sub-
lattice index. This suggests that the fundamental parallelotope
of Λ(IL) could be a hypercube of edge length equal to

√
5,

but this needs to be checked explicitly.
An ideal IL of norm 5 can be found from the following

ideal factorization

5 · OL = I2 · I2
= (1 + i − iθ)2 · (1 − i + iθ)2 (4)

Let us take the principal ideal IL = I = (α), where α =
1 + i − iθ.

Following [12], let the canonical embedding of L be defined
by

σ : L �→ R4

σ(x) = [
(σ1(x)),�(σ1(x)),
(σ2(x)),�(σ2(x))] (5)

where

σ1(iθ) = iθ σ2(iθ) = iθ̄
σ3(iθ) = −iθ = σ1(iθ) σ4(iθ) = −iθ̄ = σ2(iθ̄)

(6)

are the four field homomorphisms. The bi-quadratic nature of
L is reflected by its Galois group

Gal(L/Q) = {σ1, σ2, σ3, σ4}
= Gal(Q(i)/Q) × Gal(Q(θ)/Q) = C2 × C2 (7)

The real lattice generator matrix of Λ(OL) is obtained by
applying the canonical embedding to the integral basis BL,
while the real lattice generator matrix R of the sublattice
Λ(IL) is obtained by applying the canonical embedding to
the integral basis of the principal ideal IL = (α), which is
given by {α, iα, αθ, iαθ}. Hence,

R =

⎡
⎢⎢⎣

1 −1 + θ θ 1
1 − θ 1 −1 θ

1 −1 + θ̄ θ̄ 1
1 − θ̄ 1 −1 θ̄

⎤
⎥⎥⎦

By straightforward calculations we may verify that RT R =
5I , which corresponds to the

√
5 Z4–lattice.

The corresponding complex lattice Λ(IK) can be obtained
by applying the complex canonical embedding

σ : K �→ C2

σ(x) = [σ1(x), σ2(x)] (8)

1The fields K and L coincide abstractly, it is only for convenience of
exposition that we use distinct notation

to the relative basis {α, αθ} of IK:

M =
[

σ1(α) σ1(αθ)
σ2(α) σ2(αθ)

]
=

[
1 + i(1 − θ) θ − i
1 + i(1 − θ̄) θ̄ − i

]

If we consider the cyclic division algebra A =
(K/Q(i), σ, γ) over K, we can represent all its elements by
2 × 2 matrices:

X =
[

x1 0
0 x2

]
+

[
x3 0
0 x4

]
·
[

0 1
γ 0

]

=
[

x1 x3

γx4 x2

]
(9)

where x1, x2, x3, x4 ∈ K and γ ∈ Q(i) is not an algebraic
norm of any element of K (see [6], [7]).

In our case, we define C∞ = (A, IK) as an order of A,
obtained by restricting x1, x2, x3, x4 ∈ IK. Codewords of C∞
are given by

X = diag

(
1√
5
M

[
a
b

])
+ diag

(
1√
5
M

[
c
d

]) [
0 1
γ 0

]

=
1√
5

[
α(a + bθ) α(c + dθ)
γᾱ(c + dθ̄) ᾱ(a + bθ̄)

]
(10)

where a, b, c, d ∈ Z[i], ᾱ = 1 + i(1 − θ̄) and the factor 1√
5

is
necessary to normalize M in order to obtain a unitary matrix.

Division algebras guarantee that det(X) �= 0 for all
codewords. But how can we choose γ to avoid vanishing
determinants and preserve energy efficiency?

The numerically optimized codes in [1] take γ = e iφ ∈
C, such that it is transcendental over K. The fact that γ is
transcendental guarantees non-zero determinants. From (10),
we have

det(X) =
1
5

(
NK/Q(i)(z1) − γNK/Q(i)(z2)

) �= 0

∀ z1 = α(a + bθ) ∈ IK, z2 = ᾱ(c + dθ̄) ∈ IK (11)

The idea is to choose a γ ∈ Z(i) (hence not transcendental)
which is not a norm of elements of IK as proposed in [6] and
also such that |γ| = 1, which guarantees that the same average
energy is transmitted from each antenna at each channel use.
This limits the choice to γ = ±1,±i.

In order to satisfy the non vanishing determinant condition
in (11), we choose γ = i and verify that it is never a norm of
an element of K (see Appendix). Hence, by choosing γ = i,
we ensure that the determinants in (11) only take values in
the discrete set 1

5Z[i]. In Fig. 1 we plot the first few terms of
the determinant spectrum in the complex plane. In this plot,
we can see an empty disk around the origin whose radius is
exactly δmin (C∞). Let us relate this to the algebraic structure
of the code. From (11) we have

det(X) =
1
5
NK/Q(i)(α)

(
NK/Q(i)(a + bθ) − γNK/Q(i)(c + dθ)

)
∀ a, b, c, d ∈ Z[i] (12)

As the second term in (12) only takes values in Z[i] and its
minimum modulus is equal to 1 (take a = 1 and b = c = d =
0), we conclude that

δmin(C∞) =
1
25

|NK/Q(i)(α)|2 =
1
25

|2 + i|2 =
1
5

(13)



Fig. 1. Some determinants for the codewords of C∞ (see (13))
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Fig. 2. Transmitted constellation for 4–QAM (Golden code)

III. SIMULATION RESULTS

The numerically optimized 2× 2 full-rate codes in [1] have
vanishing determinants and are equivalent to:

{
X =

1√
2

[
a + bθ c + dθ

γ(c − dθ) a − bθ

]
a, b, c, d ∈ Z[i]

}

with γ = θ = eiφ.

The first 2 × 2 code proposed in [1] falls in the general
scheme of (10), where we take the cyclotomic field K =
Q(i, θ) = Q(θ) with θ = eiπ/4, α = 1 and γ = θ =

√
i /∈

Z[i]. We will denote this code by Ca.
Further optimization of δmin yields different codes with a

similar structure to Ca with γ = θ transcendental or algebraic.
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Fig. 3. Transmitted constellation for 4–QAM (Best previously known code)

γ
√

δmin 4–QAM
√

δmin 16–QAM
√

δmin 64–QAM

γ = eiπ/4 0.0858 0.0272 0.0147
γ = ei/2 0.2369 0.0137 0.0137
γ = eiπ/6 0.1895 0.0508 0.0186

γ = i 1.7889 1.7889 1.7889

TABLE I

COMPARISON OF
√

δmin

In the case γ is transcendental, as explained in [7, Proposition
12], K = Q(i, γ) is not necessarily a finite extension [15].

We will denote these codes for the 4–QAM by Cb4, where
γ = ei/2, and for the 16–QAM by Cb16, where γ = eiπ/6.
The Golden code Cg has δmin(Cg) = 16/5, for any size of the
constellation S and is always larger than the previous ones
(see Table I).

The symbols per transmit antenna (i.e., the elements of the
matrix codewords) are drawn from a “coded” constellation S c

plotted in Figs. 2 and 3 and for the Golden code and the best
previously known one [1], respectively. We can observe that,
for the Golden code, Sc is almost a rotated regularly spaced
QAM constellation with 22b distinct points with same average
energy as S, whereas it is the union of 3 PSK constellations
for the other code. We conjecture that this property of the S c

constellation along with the minimum value of δmin are the
key factors to explain the good performance of the Golden
code in the medium SNR range.

In Fig. 4 we show the bit error rates for the codes Cb4, Cb16

and the Golden code Cg as a function of Eb/N0 for the
standard block fading 2 × 2 MIMO channel. The maximum
likelihood sphere decoder [16], [17] is used at the receiver. We
can observe that the Golden code gains 0.9dB in the 16–QAM
case and 1.2dB in the 4–QAM case with respect to the best
previously known codes.
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Fig. 4. Performance comparison of the new codes vs. those of [1] and [15]

IV. CONCLUSION

We presented a new 2 × 2 LD-STBC with full rate and
full diversity, energy efficient and with non vanishing determi-
nants. This outperforms all previously known codes. Moreover,
it is possible to show that a family of codes similar to the
Golden Code can be generated using K = Q

(
i,
√

p
)

for all
primes p ≡ 5 mod 8 [18]. For these codes, δmin = 1/p.
Hence, the Golden code gives the largest δmin within this
family.
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APPENDIX

We show, in this appendix, that the cyclic algebra A defined
in eq. (9) is a division algebra.

Proposition 1: Let K = Q
(
i,
√

5
)
, then the element γ = i

is not a relative norm of any x ∈ K, i.e., NK/Q(i)(x) �= i, ∀x ∈
K.

Proof: Let Q5 denote the field of 5-adic numbers, and
Z5 = {x ∈ Q5|ν5(x) ≥ 0} its valuation ring [19]. The
complex rationals Q(i) can be embedded in Q5 by

i �→ 2 + 5Z5

Let x = a + b
√

5 ∈ K with a, b ∈ Q(i) then we must show
that

NK/Q(i)(x) = a2 − 5b2 = i

has no solution for a, b ∈ Q(i). We can lift this equation in
the 5-adic field Q5

a2 − 5b2 = 2 + 5x a, b ∈ Q(i), x ∈ Z5 (14)

and show that it has no solution there. We take the valuations
of both sides of (14)

ν5(a2 − 5b2) = ν5(2 + 5x)

to show that a and b must be in Z5. In fact, since x ∈ Z5,
ν5(2 + 5x) ≥ min{ν5(2), ν5(x) + 1} = 0, and we have
equality as both valuations are distinct. Now, ν5(a2 − 5b2) =
min{2ν5(a), 2ν5(b) + 1} must be 0, hence ν5(a) = 0 which
implies a ∈ Z5 and consequently b ∈ Z5.

We conclude by showing that

a2 − 5b2 = 2 + 5x a, b, x ∈ Z5

has no solution. Reducing modulo 5Z5 we find that 2 should
be a square in GF (5), which is a contradiction.
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