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Space-Time Coding Schemes for MDL-Impaired
Mode-Multiplexed Fiber Transmission Systems

Elie Awwad, Ghaya Rekaya-Ben Othman, and Yves Jaouën

Abstract—Spatial division multiplexing (SDM) holds out the
prospects of increasing the capacities of optical fiber transmis-
sion links, especially with the recent achievements in the design of
few-mode fibers and few-mode optical amplifiers. However, these
systems are impaired by the capacity-limiting mode dependent loss
(MDL) arising from imperfections in the optical fiber and inline
components. Optical solutions were suggested to reduce, yet not
completely remove, the accumulated MDL in the link through the
use of strong coupling fibers and mode scramblers. Inspired by our
previous study on mitigating polarization dependent loss (PDL), we
present space-time (ST) coding schemes to mitigate MDL in mode-
multiplexed optical transmission systems. We show, for the first
time, that the combination of redundancy-free ST coding solutions
with inline mode scrambling and optimal maximum-likelihood
(ML) detection can completely absorb the SNR penalties induced
by the MDL. The performance was assessed through simulations of
three- and six-mode multiplexed systems where MDL levels up to
10 dB were observed. However, given the increased computational
complexity of the suggested ML-decoded ST schemes, we present
two reduced-complexity ST solutions offering a near-optimal per-
formance. The first one consists in using a sub-optimal decoder and
the second is a multiblock ST coding approach that can be scaled
up for larger SDM systems.

Index Terms—Fiber optics communications, MIMO, space divi-
sion multiplexing, space-time coding.

I. INTRODUCTION

O PTICAL fiber communication systems have known im-
portant and steady evolution for the last decades in order

to meet the increasing demand for higher capacities in today’s
information-driven environments. The ever-growing number of
users and machines connected to the Internet urged the need
to increase the data carrying capacity of every single optical
fiber in the backbone of the global telecommunication system.
This evolution involved the exploration and optimal use of the
following degrees of freedom of standard single mode fibers in
currently deployed systems: time, wavelength, phase and po-
larization. To keep up with the rising demands, an additional
degree of freedom, space is being widely investigated today to
achieve the next leap in capacity [1]–[4]. Spatial division multi-
plexing (SDM) had been experimentally demonstrated through
different approaches including multi-core fiber (MCF) solutions
where several coupled or uncoupled cores coexist in the same
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cladding, or multi-mode fiber (MMF) solutions where the fiber
core is enlarged to allow the propagation of several linearly po-
larized (LP) modes, or even a combination of both (MCF where
each core is multi-mode) [1], [5]–[7]. The main advantage of
these SDM techniques is the provision of an orthogonal set of
pathways that can carry independent data streams in the same
fiber while answering integration constraints of system compo-
nents, i.e., components that operate on all the modes such as
mode couplers [8], optical amplifiers [9], [10], and wavelength
selective switches (WSSs) [11], thus aiming to reduce the cost
per bit and energy consumption of the system.

However, while offering interesting multiplexing capabili-
ties, SDM adds a primary challenge which is the management
of crosstalk caused by the packing of several channels in the
same fiber. In MCFs, the crosstalk increases when reducing the
inter-core distances while in MMFs, LP modes overlap signif-
icantly in the single core, and the carried data streams couple
randomly during the propagation. LP modes will also endure
differential losses or gains leading to modal loss disparities. In
this paper, we will focus on the management of the loss dispar-
ities in mode division multiplexed (MDM) optical transmission
systems. This focus is driven, on one hand, by the emergence
of new fabrication processes of few-mode optical components
such as few-mode fibers (FMFs) [7] and few-mode amplifiers
(FMAs) that are gaining in maturity.

Another substantive reason for the current interest in MDM
systems is the integration of coherent detection and digital
signal processing (DSP) techniques to electronically manage
modal crosstalk at the receiver using multiple-input-multiple-
output (MIMO) filters. Originally developed for wireless sys-
tems, MIMO signal processing has been successfully applied
to undo channel crosstalk and retrieve the transmitted data by
processing all the received data streams at the same time (from
antennas in multi-antenna wireless channels, from polarization
states in Pol-Mux systems [12], [13] or from modes in MDM
systems). If the data streams remain orthogonal and their total
energy is conserved after propagating through the transmission
system, the channel would be equivalent to a unitary trans-
formation, and hence a channel inversion would be enough in
order to separate the streams and retrieve the performance of
a crosstalk-free additive white Gaussian noise (AWGN) chan-
nel. However, long-haul MDM systems are impaired by modal
loss disparities, also known as mode dependent loss (MDL),
arising from imperfections in the link such as non-unitary cou-
plings in the fiber due to bending losses and splices [14] as
well as MDLs/gains in optical components such as FMAs and
WSSs [9]–[11]. MDL deteriorates the overall system perfor-
mance [14], [15] because the data-carrying streams interweave
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while experiencing different levels of attenuation and lose their
orthogonality [2], [16]. Hence, MDL is definitely a challenge
that needs to be surmounted.

In order to reduce MDL arising from in-line components in
long-haul optical links, fibers with strongly coupled modes [15]
and mode scramblers [14], [17] were suggested to average the
losses experienced by each mode, thus reducing the accumu-
lated MDL. While these optical solutions reduce MDL, they
are not able to completely eliminate it. Moreover, some strin-
gent requirements are needed in order to obtain the desired
MDL reduction (fiber design, number of mode scramblers in
the link...). On the other hand, in [15], Lobato et al. used an
optimal maximum-likelihood (ML) detection instead of a zero-
forcing (ZF) equalizer to enhance the performance of MDL-
impaired MDM systems. This is expected for sure in presence
of MDL due to the enhancement of noise by the channel inver-
sion operation of the ZF equalizer that leads to a sub-optimal
detection. In [18], the same authors proposed two alternatives to
the high-complexity exhaustive search ML detection: a reduced-
complexity sub-optimal version and the well-known sphere de-
coder (SD) [19]. However, we will show that more gains can be
obtained with MIMO coding techniques.

In this work, we propose space-time (ST) coding, originally
designed to combat multipath fading in wireless MIMO systems,
as a DSP solution to mitigate MDL in the optical channel. Apply-
ing ST codes to polarization-multiplexed systems showed their
efficiency in mitigating polarization dependent loss (PDL) [20]
and provided an insight into considering them for MDM sys-
tems. In [21], we showed the efficiency of ST coding in mit-
igating MDL generated by fiber imperfections in three-mode
MDM systems. In [22], Okonkwo et al. also suggested a ST ar-
chitecture to enhance the performance of a three-mode system
by repeating a delayed version of the same data symbol over the
different modes. While this architecture offers OSNR gains, it
inherently reduces the multiplexing gain of the MDM system. In
this paper, we show that redundancy-free ST schemes can be ap-
plied to mitigate MDL and enhance system performance while
maintaining the multiplexing gains. The performance of three-
and six-mode MDM schemes is investigated where FMAs, one
of the major sources of MDL, are considered: first, we de-
fine a channel model and study the MDL-induced penalties in
a single-polarization MDM scheme. A single-polarization hy-
pothesis is considered to solely focus on loss disparities between
spatial modes. Second, we apply ST codes at the transmitter
along with optimal ML detection at the receiver to mitigate
MDL. We show, for the first time, a complete mitigation of
MDL levels as high as 10 dB in a six-mode MDM Orthog-
onal frequency division multiplexing (OFDM) system. Later,
we analyze the complexity of the proposed ST coding solution
to evaluate the scale-up possibilities to larger MDM systems.
Consequently, we suggest two low-complexity scalable schemes
that maintain the MDL-induced penalty low. The first uses a sub-
optimal detection, the ZF with decision feedback equalization
(ZF-DFE) and the second scheme consists of a new multi-block
coding approach.

II. MDM OPTICAL TRANSMISSION SYSTEMS

A. System Model

Long-haul MDM systems give rise to linear impairments that
must be mitigated in order to retrieve the transmitted data. We
focus in this section on the most challenging impairments that
include differential modal group dispersion (DMGD) in FMFs,
modal crosstalk as well as MDL. Then, based on models sug-
gested in previous works [14], [15], [23], we define and sim-
ulate a channel model of an MDL-impaired mode-multiplexed
transmission.

1) Differential Modal Group Dispersion: In FMFs, DMGD
between different modes results in temporal inter-symbol inter-
ference. Moreover, these modes spatially mix during propaga-
tion which requires MIMO equalization techniques to retrieve
the multiplexed signals at the receiver side. Given M propa-
gating modes, the equalizing filter consists of M × M matrices
that will completely compensate unitary crosstalk and disper-
sion provided that the filter is larger than the maximum de-
lay spread between modes [24]. Computational complexities of
several time-domain and frequency-domain equalizers (FDE)
in both single-carrier (SC) and multi-carrier formats were stud-
ied [25]. OFDM and SC-FDE were found to achieve the lowest
complexities for long-haul MDM systems with a small advan-
tage for OFDM [25].

2) Crosstalk & Fiber Model: The propagating modes spa-
tially overlap in the fiber due to imperfections in doping and
asymmetries caused by mechanical or thermal stress and micro-
bends. Hence, the symbols carried by each mode couple ran-
domly along the fiber. This coupling can be unitary and lossless
as modeled in [26], [27] or non-unitary and lossy as modeled
in [23] depending on the fiber designs and the sources of imper-
fections. Two coupling strategies were recently investigated: low
crosstalk levels [28], [29] to avoid the use of complex MIMO
processing at the receiver, or strong coupling with a full MIMO
processing [24]. Strong coupling can be positively exploited to
reduce both the DMGD spread and the accumulated MDL be-
cause both effects follow a random-walk process in presence of
strong coupling, and thus scale with the square-root of the fiber
length or the number of MDL sources in the link, rather than
scaling linearly [16], [30].

In our model, we intentionally choose to keep the fiber-
generated coupling unitary, neglecting any distributed MDL at
imperfect splices and micro-bends, to solely focus on the accu-
mulated MDL generated by discrete inline components. Recent
works showed the possibility of realizing low-splice losses of
FMF sections [31] and some initial transmission experiments
over 30 km [7] to 96 km [24] of FMFs have also shown a neg-
ligible fiber-generated MDL. We model each fiber span as a
concatenation of K independent sections:

Fspan,M ×M =
K∏

k=1

(TkRk ) (1)

Each section is a product of a diagonal matrix Tk with ran-
dom phase entries and a real orthogonal rotation matrix Rk
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Fig. 1. ST coded MDM OFDM transmission system.

representing the distributed modal crosstalk. In order to gener-
ate these rotation matrices for any number of modes, the mode
coupling angles of Rk will be computed using the crosstalk
levels generated at displaced cores of two fiber sections. These
crosstalk levels are computed by an overlap integral of the elec-
trical field distributions of the propagating modes over the fiber
cross section as in [14]:

cM 1−M 2 =
∫∫

A

EM 1(x, y)E∗
M 2(x + ∆x, y + ∆y)dA (2)

where M1 and M2 ̸= M1 are two different guided modes, A is
the fiber cross section, E is the normalized complex field, ∆x
and ∆y are the misalignment values. It is important to mention
that overlap integrals at a core misalignment are used to emulate
modal coupling. In case a real misalignment was present, the
resulting crosstalk matrix would not be unitary [14]. This emu-
lation technique was motivated by an observation in [32] where
authors noted that crosstalk levels computed from overlap inte-
grals were equal to the ones computed from the coupled-mode
theory. M(M − 1)/2 crosstalk values are needed correspond-
ing to the number of Euler angles in the rotation matrix. The
misalignments ∆x and ∆y for each section are drawn from a
uniform distribution over [−σrc : σrc ] where σ is a percentage
of the core radius rc that sets the coupling strength.

3) Mode Dependent Loss: In long-haul MDM systems,
MDL arises mainly from imperfect inline components such as
optical amplifiers and WSSs [14], [15], [33], [34]. Unlike disper-
sion, MDL reduces the capacity of the MIMO channel because
the data-carrying spatial modes interweave while observing var-
ious attenuation levels which breaks the orthogonality of these
modes and result in a loss of information that is irreversible at
the receiver side. Hence, it is crucial to maintain low MDL lev-
els in the link. Due to technological limits (the need of tailored
doping profiles, specific spatial distribution of pumping power
in FMAs), it is quite hard to maintain gain offsets in the optical
components lower than 2 dB for more than 6 spatial modes,
especially for FMAs [9], [10].

4) Complete Channel Model: We define an MDM OFDM
transmission system, as shown in Fig. 1, with 3 (resp. 6) propa-
gating modes: the fundamental mode LP01 and the two degen-
eracies LP11a and LP11b of the LP11 mode (resp. these three
modes, the LP02 as well as the degeneracies LP21a and LP21b

of the LP21 mode). Though unrealisitic, we consider a single
polarization per spatial mode in order to concentrate only on dif-
ferential modal losses as done in several studies on MDL [14],
[16], [23]. We neglect any fiber non-linearity and focus on the
linear impairments of the system. An OFDM signal with a suit-
able cyclic prefix modulates each spatial mode. The long-haul
optical link contains FMFs and amplifiers with modal gain off-
sets. In absence of laser phase noise and frequency offsets, the
resulting MIMO channel per OFDM subcarrier is given by:

YM ×T = HM ×M XM ×T + NM ×T

=
√

α
L∏

l=1

(PlGlFl)XM ×T + NM ×T (3)

where XM ×T (resp. YM ×T ) are the emitted (resp. the received)
complex symbols on the M = {3, 6} modes and during T time
slots. HM ×M is the linear channel matrix consisting of L inde-
pendent fiber spans Fl given by (1), followed each by an FMA
modeled as a diagonal matrix Gl , as well as a mode scrambler
Pl . The gains in Gl are assigned as follows: the LP01 mode has
a unit gain and gain offsets ∆G01−µν are defined for each LPµν

mode. Pl are random permutation matrices representing perfect
mode mixers as in [14]. α is a normalization factor compensat-
ing common losses. In a real system, MDL can be frequency-
dependent with a coherence bandwidth dictated by the amount
of modal dispersion in the link [16], [33]. In [35], the frequency
averaged MDL estimated from a 10 × 50 km six-mode WDM-
SDM experiment was relatively wavelength-independent across
the C-band. As a first approach, modal dispersion has not been
considered, as done in recent studies [14], [36], to limit the cur-
rent investigation to a single wavelength or to a frequency-flat
channel. Finally, NM ×T is an additive noise assumed to be zero-
mean white Gaussian of variance 2N0 per complex dimension
per mode added at the receiver. In a long-haul optical link, the
dominant noise is amplified spontaneous emission generated at
each amplification stage. Hence, it is subject to MDL and can
become spatially colored. In [16], Ho et al. showed that with
strong modal coupling, the spatial non-whiteness of the noise
can be neglected when the number of noise sources in the link
increases. In our model, the hypothesis of a white noise will be
maintained for all coupling levels as it was done in recent
works [14], [18], [36], and the study of noise correlation will be
left for a future study.

Before introducing ST codes, we look into the statistics of
MDL in the defined channel model under different coupling sce-
narios. We consider an MDM system with L = 8 spans where
FMFs have a parabolic index profile with a core radius of 8.7µm
and a numerical aperture of 0.205 at λ = 1550 nm, thus support-
ing 6 modes. Each span consists of K = 200 sections. The am-
plifiers present the following gain offsets ∆G01−11 = −1.3 dB,
∆G01−21 = −2 dB and ∆G01−02 = −0.2 dB corresponding to
a promising FMA design with optimized gain offsets presented
in [10], and are followed by a mode scrambler. For K = 200
sections, three coupling strengths are investigated by draw-
ing misalignments from a uniform distribution with σ tuned
to 0.6%, 3% and 5% of the core radius rc to emulate weak,
medium and strong modal coupling respectively. 106 channel
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Fig. 2. Simulated probability distribution functions of MDL in the investigated
6 × 6 MDM system in different coupling and scrambling scenarios (8 spans,
2 dB of MDL per span).

realizations were numerically simulated and the corresponding
MDL levels were computed for each scenario, MDL being de-
fined as the ratio in dB between the squares of the highest and
the lowest singular values of H. The obtained MDL distribu-
tions are shown in Fig. 2. First, we notice that coupling and
scrambling significantly reduce the average MDL as well as
its variance. With weak-coupling fiber spans, the 2 dB MDL
of each amplifier sums up resulting in an accumulated MDL
of 8 × 2 = 16 dB. At medium coupling, the modes are only
partially correlated and the average MDL decreases to 10 dB.
Strong coupling and mode scrambling reduces the average MDL
to 6 dB which is close to

√
8 × 2 = 5.7 dB, the expected accu-

mulated MDL value when full, random coupling occurs between

identical MDL sources [16]. Hence, strong coupling in FMFs
is desirable in order to reduce the accumulated MDL as it does
with the DMGD spread [16]. However, in all cases, MDL cannot
be eliminated completely.

B. ST Coding

Conventional optical MIMO schemes use simple data multi-
plexing which consists, in the MDM case, in sending a vector
SM ×1 of independent symbols (q-quadratic-amplitude modu-
lation (QAM) for instance) on M modes at a single time slot.
However, we can make better use of the “space” and “time” di-
mensions of the MDM MIMO scheme by inserting the same data
symbol in newly-formed linear combinations sent over different
modes at different time slots. Then, at the receiver, the copies
can be exploited to enhance the performance since the same data
symbol would have experienced various channel states, hence
the loss disparities between the data streams would be further
reduced. This technique is known as ST coding and was origi-
nally designed for wireless MIMO communications to combat
Rayleigh fading [37].

Many ST code families were designed for wireless MIMO
schemes. We will focus on a specific category of codes: ST
block codes (STBC) in which a codeword is represented by a
matrix XM ×T , where T is the number of time slots over which
the code is defined. It is obtained by multiplying a symbol
vector SM T ×1 with a generator matrix MG and rearranging
the obtained vector into an M × T matrix. This operation takes
place at the transmitter side in the “ST Coding” block in Fig. 1.

XT ,3×3 =
1√
3

⎡

⎢⎣
s1 + θs2 + θ2s3 φ2(s4 + jθs5 + j2θ2s6) φ(s7 + j2θs8 + jθ2s9)
φ(s7 + θs8 + θ2s9) s1 + jθs2 + j2θ2s3 φ2(s4 + j2θs5 + jθ2s6)
φ2(s4 + θs5 + θ2s6) φ(s7 + jθs8 + j2θ2s9) s1 + j2θs2 + jθ2s3

⎤

⎥⎦ (4)

vecC (XT ,3×3) = MG,9×9S9×1

=
1√
3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 θ θ2 0 0 0 0 0 0
0 0 0 0 0 0 φ φθ φθ2

0 0 0 φ2 φ2θ φ2θ2 0 0 0
0 0 0 φ2 φ2jθ φ2j2θ2 0 0 0
1 jθ j2θ2 0 0 0 0 0 0
0 0 0 0 0 0 φ φjθ φj2θ2

0 0 0 0 0 0 φ φj2θ φjθ2

0 0 0 φ2 φ2j2θ φ2jθ2 0 0 0
1 j2θ jθ2 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
s3
s4
s5
s6
s7
s8
s9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

XT ,6×6 =
1√
6

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(s1) φ
5
6 f2(s6) φ

4
6 f3(s5) φ

3
6 f4(s4) φ

2
6 f5(s3) φ

1
6 f6(s2)

φ
1
6 f1(s2) f2(s1) φ

5
6 f3(s6) φ

4
6 f4(s5) φ

3
6 f5(s4) φ

2
6 f6(s3)

φ
2
6 f1(s3) φ

1
6 f2(s2) f3(s1) φ

5
6 f4(s6) φ

4
6 f5(s5) φ

3
6 f6(s4)

φ
3
6 f1(s4) φ

2
6 f2(s3) φ

1
6 f3(s2) f4(s1) φ

5
6 f5(s6) φ

4
6 f6(s5)

φ
4
6 f1(s5) φ

3
6 f2(s4) φ

2
6 f3(s3) φ

1
6 f4(s2) f5(s1) φ

5
6 f6(s6)

φ
5
6 f1(s6) φ

4
6 f2(s5) φ

3
6 f3(s4) φ

2
6 f4(s3) φ

1
6 f5(s2) f6(s1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)
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In this category, we will choose codes for 3 × 3 and 6 × 6
MDM channels that fulfill the following requirements: first, the
codeword matrices are square (M = T ) in order to place each
data symbol on a different mode at each time slot. Second,
full-rate codes will be used meaning that M 2 different q-QAM
information symbols are sent in each codeword, which does
not reduce the multiplexing gain of the MDM system. Third, a
uniform average energy will be transmitted per mode. A code
family well-known for its generality and performance that meets
these requirements is the linear threaded algebraic space-time
codes (TAST) [38].

The 3 × 3 TAST codeword is given above in (4) shown
at the bottom of the previous page, where φ = exp(iπ/36),
j = exp(i2π/3), θ = exp(iπ/9) and sk=1:9 are q-QAM sym-
bols. φ and θ are chosen to maximize the coding and diversity
gains over a wireless Rayleigh fading 3 × 3 multi-antenna chan-
nel [38]. 9 q-QAM symbols are sent on three time slots in each
codeword, achieving a rate of three symbols/time slot. Another
way of representing the code consists in vectorizing, column-
wise, (4) into (5), shown at the bottom of the previous page,
where MG is the generator matrix of the code and is unitary
(MGM†

G = I9×9). Hence, we do not increase the energy of the
new transmitted symbols after encoding the q-QAM informa-
tion symbols. The 6 × 6 TAST codeword id given in (6), shown
at the bottom of the previous page, where φ = exp(iπ/12), s1···6
a vector of six q-QAM symbols, fn (x) = Σk=1:6xk (jn−1θ)k−1

with j = exp(i2π/6), θ = exp(iπ/18). 36 symbols are sent on
6 time slots in each codeword, achieving a full rate of six sym-
bols/time slot. Its unitary generator matrix can be found in [38].

C. ST Decoding

At the receiver side, the original data symbols are estimated
using an ML decoder. Assuming that the channel matrix H is
known (or perfectly estimated) and constant during T time slots,
and that all emitted codewords X are equiprobable, the optimal
detection scheme of the channel in (3) should satisfy the ML
criterion that consists in estimating the codeword X with X̂M L

minimizing the following Euclidean distance:

X̂M L = argminXM ×T ∈C ∥Y − HX∥2 (7)

where C is the set of all possible transmitted codewords. The
ML criterion can be further developed to explicitly show the
original q-QAM symbols. To this end, we use a vectorized form
of (3) showing the generator matrix of the ST code and define
an equivalent channel Heq [39]:

Y
′

M T ×1 = vecC(Y) =

⎡

⎢⎣
H 0 0

0
. . . 0

0 0 H

⎤

⎥⎦ vecC(X) + vecC(N)

= H
′

M T ×M T MGSM T ×1 + N
′

M T ×1

= HeqS + N
′

(8)

where MG is the generator matrix of the coding scheme. In the
case of simple spatial multiplexing without coding, T = 1 and
MG is replaced by the identity matrix. S is a vector of q-QAM

symbols. Given that H is a full-rank matrix and MG is unitary,
the ML decoding rule can be reinterpreted as:

ŜM L = argmin
SM T ×1 ∈C ′

∥Y′ − HeqS∥2 (9)

where C
′

is the set of all possible transmitted q-QAM sym-
bols. The ML criterion can be implemented through an exhaus-
tive search in C

′
where the norm in (9) has to be computed

for all possible combinations of the emitted symbols. In the
case of a full-rate square ST code with q-QAM symbols, this
leads to qM 2

norm computations. Fortunately, lower-complexity
decoders satisfying the ML criterion exist such as the reduced-
search lattice decoders from which we will use the SD suggested
in [40]. After applying a complex-to-real transformation of the
channel in (8), the symbol dictionary C

′
is seen as a lattice where

each emitted symbol vector S is a lattice point. Due to the prop-
agation through a noisy channel, the received vector Y′

is no
longer a lattice point and the SD searches for the closest lattice
point in a spherical region centered on Y′

. The choice of the
radius of the sphere is crucial for the complexity reduction of the
search algorithm. If the radius is judiciously chosen in function
of the noise variance and the singular values of the channel, the
complexity of the search algorithm becomes independent of the
constellation size q and is approximated by O((MT )6) [40].
This gives O(M 6) operations for uncoded spatial multiplexing
and O(M 12) for a full-rate square STBC.

III. PERFORMANCE OF CODED SYSTEMS

The benefits of using ST coding to mitigate MDL will be il-
lustrated in a three-mode (resp. six-mode) MDM system where
graded-index fibers with a parabolic index profile are installed,
and have a core radius rc = 6µm (resp.rc = 8.7µm). The field
distributions of the modes are approximated by Laguerre-Gauss
modes as in [14]. The simulated link is the one presented
in (3) and the link parameters are the same as the ones used
in Section II-A4. For the three-mode system, a gain offset of
∆G01−11 = −1.3 dB is considered at each FMA [10]. We re-
call that a single polarization per mode is considered to focus
solely on MDL. At the transmitter, in the uncoded scheme (or
no coding: NC), a vector of 4-QAM symbols Sm=1:M of unit
energy ES = 1 is sent over the modes providing a rate of 6 bits
(resp. 12 bits) per time slot. In the coded case, a 3 × 3 (resp.
6 × 6) TAST code is used. At the receiver, in all scenarios,
the data symbols are retrieved using a SD. The performance in
terms of average bit-error-rate (BER) curves versus the symbol
signal-to-noise ratio ES /2N0 per mode, of both, NC and ST-
coded schemes is measured through Monte-Carlo simulations.
A minimum of 100 bit errors are registered per simulation point.
Three coupling scenarios with and without mode scrambling at
the FMAs are presented in Fig. 3.

The first column in Fig. 3 shows the results for a three-mode
MDM system. From the square marked curves correspond-
ing to NC without mode scramblers, we notice that the SNR
penalty at BER = 10−3 induced by MDL (i.e. the gap at a given
BER to a perfect MDL-free Gaussian channel) decreases from
4.2 dB for weak coupling, to 1.2 dB for medium coupling and to
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Fig. 3. Performance in terms of average BER versus SNR of 3 × 3 (a,c,e) and 6 × 6 (b,d,f) MDM systems obtained through Monte Carlo simulations (eight spans
of graded-index parabolic profile fibers with a core radius rc = 6µm (resp.rc = 8.7µm) and a numerical aperture NA = 0.205 at a wavelength λ = 1550 nm,
FMAs with a maximum modal gain offset of 2 dB). (a) 3 × 3 system, strong coupling. (b) 6 × 6 system, strong coupling. (c) 3 × 3 system, medium coupling. (d)
6 × 6 system, medium coupling. (e) 3 × 3 system, weak coupling. (f) 6 × 6 system, weak coupling.

0.5 dB for strong coupling. Adding mode scramblers at FMAs
(triangle marked curves), reduces these penalties to 1.5 dB for
weak coupling and 0.4 dB for medium coupling while it has
no effect in strong coupling regime because the modes are al-
ready fully coupled in the fiber. The same observations can be
made for the six-mode MDM system (second column in Fig. 3).
Again, scrambling has no effect in the strong coupling regime
because the modes are fully coupled in the fiber and the MDL
cannot be further reduced by the scramblers as can be seen from
the MDL distributions in Fig. 2. Modal coupling and scrambling

reduce the overall MDL and thus enhance the performance of
MDL-impaired MDM schemes, which was already observed in
previous works [15], [17].

On the other hand, when the 3 × 3 TAST code is used alone
(square-marked dashed curves in Fig. 3), it outperforms the
scrambling solution in the scenario of weak coupling, reduc-
ing the SNR penalty at BER = 10−3 to 1 dB for a three-mode
system, which is equivalent to a coding gain of 3 dB. Further-
more, the TAST code absorbs all the MDL-induced penalty in
the medium and strong coupling scenarios. Similar reductions
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of penalties are observed with the 6 × 6 TAST code for the
different coupling levels. Finally, combining the ST code with
mode scrambling results in no penalty in all three-mode and
six-mode schemes, and not only at a BER of 10−3 but for any
given BER. These results prove the efficiency of ST coding so-
lutions in mitigating MDL by averaging the losses experienced
by the mode multiplexed data symbols, making it an interesting
DSP solution for MDM systems. From the obtained results, we
conclude that ST codes can be used as an alternative to mode
scrambling or as a complementary solution to limit the number
of mode scramblers in the optical link depending on the maxi-
mum gain offset of the FMAs and the coupling strength in the
installed FMFs.

In [20], we showed that the performance enhancement of-
fered by ST codes in PDL-impaired systems obeyed different
criteria than those in wireless systems. An analytic expression
of the minimum distance between the symbols, after propaga-
tion in PDL-impaired systems, is given in [20]; and ST-coded
schemes exhibited a larger minimum distance compared to NC
schemes which explains the enhanced performance. We believe
that the same behavior is observed in MDL-impaired systems
and leave the theoretical investigation of the observed coding
gains for future studies. In the next section, we focus on the
complexity and scalability of ST coding solutions.

IV. COMPLEXITY AND SCALABILITY ANALYSIS

A major advantage of ST coding is the existence of full-rate
codes for larger MIMO systems where M > 6 modes, thus this
solution can be applied to larger MDM systems such as ten-
mode or Pol-Mux MDM systems. However, the downside is
their decoding complexity that increases fast with the size of
the MIMO system: exponentially with an exhaustive search ML
decoder (qM 2

for a square ST code using q-QAM symbols) and
in polynomial time for a SD (M 12 for a square ST code [40]).
This increased complexity can turn ST codes into a prohibitive
MIMO solution for large MDM systems. Therefore, we suggest
two possible variants of ST coding solutions that trade a portion
of the optimal coding gains observed in the previous section
for a reduction in complexity and a better scalability. The first
strategy consist in replacing the optimal ML decoder with a sub-
optimal low-complexity ZF-DFE, and the second one suggests
replacing the square M × M code with a multi-block coding
over less time slots T < M in order to reduce the complexity
of the ML SD by shortening the dimension of the codeword
dictionary. Hence, less symbols need to be decoded at once.

A. Low-Complexity ZF-DFE Decoding

In wireless Rayleigh MIMO channels, ZF-DFE demonstrates
a performance gain over the classic ZF decoder that performs
a simple channel inversion, notably through its successive in-
terference cancellation while retrieving the data symbols [41].
Decoding is performed as follows:

1) Given the equivalent channel model in (8), perform a QR
decomposition of Heq = QR that rewrites the channel
matrix as the product of Q, a unitary matrix and R, an
upper triangular matrix.

TABLE I
COMPARISON OF PER-SYMBOL DECODING COMPLEXITIES USING DIFFERENT

DECODERS OF THE EQUIVALENT N × N MIMO CHANNEL

ZF ZF-DFE ML exh.
search

ML sphere
dec.

N × N MIMO N 3 + 3 N 2 −N
N

N 3 + 3 . 5 N 2 + 0 . 5 N
N

q N (N 2 + N )
N ≈ N 6

N

Six-mode NC
(N = 6)

53 58 28 672 7776

TAST 6 × 6
(N = 36)

1403 1423 1.7 × 102 3 6 × 107

2) Compute the equivalent system:

Ỹ = Q†Y
′
= RS + Q†N

′
(10)

where the new noise Q†N′
remains white Gaussian given

that Q is a unitary matrix.
3) Estimate each symbol in the vector ŜZF−DFE by solving

the linear system Ỹ = RS. The matrix R being upper
triangular, the system can be solved in an iterative fashion
starting from the last symbol and performing a threshold
decision on each estimated symbol before feeding it to the
previous equation. This translates into:

si,i:N →1 =
yi −

∑i−1
j=0 ri,N−j ŝN −j

ri,i

ŝi,i:N →1 = ⌊si⌉ (11)

where N = MT is the dimension of the system and ⌊·⌉
is the threshold decision.

The complexity of the ZF-DFE algorithm is fixed by the
QR decomposition of the channel matrix and the resolution
of the linear system. We computed a rough estimation of this
complexity in flops that we define as the number of required
complex scalar multiplications in order to decode a transmitted
symbol S, and compared it to the number of flops required
by a ZF decoder (matrix inversion using a standard Gaussian
elimination) as well as an exhaustive search ML decoder. The
analytic expression of the number of flops required for decoding
one q-QAM symbol in the equivalent N × N MIMO system
Heq is given in Table I for the different decoders. Only an
approximate number of operations, O(N 6) [40], is given for the
SD whereas the exact number depends on the choice of the initial
radius and the noise variance. A numerical application for an
uncoded and TAST-coded 6-mode MDM system using 4-QAM
symbols is also shown in Table I. It is worthy to note that the
number of flops 6 × 107 for the SD 6 × 6 TAST scheme is still
high. Obtaining the BER curve for the ML-decoded 6 × 6 TAST
in the weak coupling case required a month-long processing on
a personal PC, however we had to evaluate the optimal ML
performance of the ST schemes to use them as a reference when
comparing to the performance of sub-optimal schemes.

We ran Monte-Carlo simulations to obtain the performance of
the ZF-DFE decoder with the previously defined 6 × 6 MDM
system. The average BER curves of both, NC and TAST-coded
schemes for three fiber coupling strengths are given in Fig 4.
In all scenarios, mode scramblers are used at FMAs. First, it is
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Fig. 4. Performance in terms of average BER versus SNR of ZF-DFE 6 × 6
ST schemes with mode scrambling, obtained through Monte Carlo simulations.
(a) strong coupling. (b) medium coupling. (c) weak coupling.

obvious that the ZF-DFE decoder performs worse than the ML
decoder for the NC scheme (circle marked curves) because of
the noise enhancement while solving the system in (10). When
ST coding is used along with ZF-DFE (dashed curves), a per-
formance gain is obtained in all cases. At BER = 10−3 , the
ZF-DFE decoded ST scheme has the same penalty of 0.4 dB
as the optimal ML-decoded NC scheme for medium and strong
coupling while it outperforms the NC scheme for weak coupling,

Fig. 5. Representation of codewords over modes (space) and time for the four
schemes: (a) single-block 6 × 6 code, (b) two blocks of 3 × 3 codes, (c) three
blocks of 2 × 2 codes, (d) uncoded spatial multiplexing.

providing a coding gain of 1.2 dB. Hence, with TAST coding and
ZF-DFE decoding, we are reaching or outperforming the ML
decoding of the NC scheme while providing a fivefold reduc-
tion in decoding complexity (7776/1423 = 5.5 from Table I).
Moreover, the complexity of the ZF-DFE ST scheme is also
independent of the constellation size of the original symbols.

Surprisingly, this performance of ST codes is completely dif-
ferent from the one obtained on a wireless channel where ZF-
DFE decoding of the codewords would bring absolutely no gain.
This is due to the need for a diversity gain in wireless commu-
nications that cannot be brought by the ZF-DFE for symmetric
N × N MIMO systems. However, for the optical channel, we
remark from the simulated BER curves in Fig. 3 that all curves
have the same slope showing an infinite diversity order which
corresponds to the behavior of a pure AWGN channel. Hence,
diversity is not an issue and coding gains can be brought using
sub-optimal ZF-DFE. In all investigated coupling scenarios, the
low complexity decoded ST scheme for a 6 × 6 MDM system
with experienced MDL levels as high as 10 dB is at worst at 1 dB
from its corresponding optimally decoded scheme that matches
the performance over an MDL-free Gaussian channel.

B. Multi-Block ST Coding

The second strategy consists in a multi-block approach.
Again, we consider the previous six-mode MDM system, to
study two new ML-decoded full-rate ST configurations. We sug-
gest to limit the dimension of the ST coded system by shortening
the length of the coding schemes. Lower complexity full-rate
schemes over T < 6 time slots such as two X3×3 coded blocks
over T = 3 slots in Fig. 5(b) or three X2×2 coded blocks
over T = 2 slots in Fig. 5(c) can be considered. An important
reduction of complexity is thus obtained compared to the single-
block 6 × 6 coded scheme. Indeed, the latter requires decoding
codewords of 36 data symbols at the receiver whereas the new
schemes contain 18 and 12 data symbols respectively.

To illustrate the benefits of this solution, we define a two-
blocks scheme where each block is coded with the 3 × 3 TAST
code in (4) and a three-blocks scheme using the 2 × 2 Sil-
ver code that can be found in [20]. The strategy for allocating
modes to blocks will depend on the modal gain offsets of the
FMAs deployed in the optical link. The weakest modes will
be coded with a privileged mode in order to average the gain
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Fig. 6. Performance in terms of average BER versus SNR of multi-block
ST schemes for 6 × 6 MDM systems with mode scrambling, obtained through
Monte Carlo simulations. (a) strong coupling. (b) medium coupling. (c) weak
coupling.

disparities. Hence, for the considered FMA technology, the
two-blocks scheme will consist of the LP01 and LP21a,b

modes in a block, and the LP02 with LP11a,b modes in
another, whereas the three-blocks scheme will consist of:
{LP01 , LP21a}, {LP02 , LP21b} and {LP11a , LP11b}. For this
multi-block coding solution, the vectorized channel model is the
same as the single-block solution in (8) with a rearranged equiv-
alent channel matrix Heq of smaller dimensions. The generator
matrix MG depicting the multi-block ST-coded configuration

will consist of a block diagonal matrix with the generator matri-
ces of the 3 × 3 TAST code or 2 × 2 Silver code on its diagonal,
as illustrated here:

MG,2−blocks =

[
MG,TAST 0

0 MG,TAST

]
(12)

MG,3−blocks =

⎡

⎢⎣
MG,Silver 0 0

0 MG,Silver 0
0 0 MG,Silver

⎤

⎥⎦ (13)

Using Monte-Carlo simulations, we evaluate the average BER
performance of the ML-decoded multi-block ST schemes over
the same previously defined 6 × 6 MDM system. Fig. 6 shows
the BER curves for three different fiber coupling strengths along
with mode scramblers after each FMA. The two-blocks scheme
absorbs all the SNR penalty at BER = 10−3 for medium and
strong coupling while the penalty is reduced to 0.5 dB for weak
coupling. The three-blocks scheme shows an SNR penalty of
0.2 dB in medium to strong coupling scenarios and a 1 dB
penalty with weak coupling. The increased penalty of the multi-
block schemes is due to the fact that the codes average gains
inside each block, mitigating intra-block MDL and neglecting
inter-block MDL, while the fully coded scheme averages the
gains over all the modes. However, the ML decoding complexity
is considerably reduced. Besides, multi-block ST coding offers
scalable solutions that can be extended to larger MDM systems.
It can also be adapted to suit other MDM optical links where a
different FMA technology is used or other MDL sources exist.

V. CONCLUSION

In this paper, we have shown, through numerical simulations,
that ST coding is a promising technique for MDL-impaired
MDM OFDM systems. It can be used as a standalone solution or
to complement other optical components-based solutions such
as mode scrambling, depending on the coupling strength in the
installed fibers. The optimal ML-performance of the applied
codes was investigated over three- and six-mode MDM chan-
nels with in-line MDL arising from optical amplifiers, showing
a complete mitigation of MDL levels up to 10 dB. Furthermore,
two strategies were presented in order to reduce the decod-
ing complexity: on the one hand, a low-complexity decoder
was shown to be near-optimal and on the other hand, a multi-
block coding approach showed interesting coding gains and a
large potential for scalability. The obtained coding gains can
relax MDL requirements of inline components or equivalently
increase the transmission reach of an MDM system. These ob-
servations pave the way for further interesting studies of ST
coding solutions in SDM systems such as the application of
other families of ST codes, as well as the extension beyond
six modes (MDM systems with a higher number of modes M
or polarization-multiplexed MDM channels where PDL can be
added as another performance-limiting effect). In the future, a
theoretical analysis of the observed coding gains and an MDM
transmission experiment are envisaged. The following effects
will be taken into account: the interaction of modal dispersion
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and MDL that will result in a frequency dependent MDL, the
non-whiteness of noise for a finite number of noise sources and
low modal coupling levels, polarization dependent effects, and
eventually the non-linear effects for high input power levels.
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for mode-multiplexed optical fiber transmission systems,” presented at the
Adv. Photon. Commun, San Diego, CA, USA, 2014, Paper SM2D.4.

[22] C. Okonkwo, R. van Uden, H. Chen, H. de Waardt, and T. Koonen,
“Advanced coding techniques for few mode transmission systems,” Opt.
Exp., vol. 23, no. 2, pp. 1411–1420, Jan. 2015.

[23] A. Juarez, E. Krune, S. Warm, C. Bunge, and K. Petermann, “Modeling of
mode coupling in multimode fibers with respect to bandwidth and loss,”
IEEE J. Lightw. Technol., vol. 32, no. 8, pp. 1549–1558, Apr. 2014.

[24] R. Ryf, S. Randel, A. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Es-
maeelpour, E. Burrows, R. Essiambre, P. Winzer, D. Peckham, A. Mc-
Curdy, and R. Lingle, “Mode-division multiplexing over 96km of few-
mode fiber using coherent 6×6 MIMO processing,” IEEE J. Lightw. Tech-
nol., vol. 30, no. 4, pp. 521–531, Feb. 2012.

[25] B. Inan, B. Spinnler, F. Ferreira, D. van den Borne, A. Lobato, S. Adhikari,
V. A. J. M. Sleiffer, M. Kuschnerov, N. Hanik, and S. L. Jansen, “DSP
complexity of mode-division multiplexed receivers,” Opt. Exp., vol. 20,
no. 10, pp. 10859–10869, May 2012.

[26] F. Ferreira, S. Jansen, P. Monteiro, and H. Silva, “Nonlinear semi-
analytical model for simulation of few-mode fiber transmission,” IEEE
Photon. Technol. Lett., vol. 24, no. 4, pp. 240–242, Feb. 2012.

[27] F. Yaman, E. Mateo, and T. Wang, “Impact of modal crosstalk and multi-
path interference on few-mode fiber transmission,” in Proc. Opt. Fiber
Commun. Conf. Exhib., Mar. 2012, pp. 1–3.

[28] C. Koebele, M. Salsi, L. Milord, R. Ryf, C. A. Bolle, P. Sillard, S. Bigo,
and G. Charlet, “40km transmission of five mode division multiplexed
data streams at 100gb/s with low MIMO-DSP complexity,” presented at
the Eur. Conf. Optical Communication, Geneva, Switzerland, 2011, Paper
Th.13.C.3.

[29] A. Li, A. A. Amin, X. Chen, and W. Shieh, “Transmission of 107-gb/s
mode and polarization multiplexed CO-OFDM signal over a two-mode
fiber,” Opt. Exp., vol. 19, no. 9, pp. 8808–8814, Apr. 2011.

[30] S. Arik, D. Askarov, and J. Kahn, “Effect of mode coupling on signal pro-
cessing complexity in mode-division multiplexing,” J. Lightw. Technol.,
vol. 31, no. 3, pp. 423–431, Feb. 2013.

[31] L. Gruner-Nielsen, Y. Sun, R. Jensen, J. Nicholson, and R. Lingle, “Splic-
ing of few mode fibers,” in Proc. Eur. Conf. Optical Commun., Sep. 2014,
pp. 1–3.

[32] F. Ferreira, D. Fonseca, A. Lobato, B. Inan, and H. Silva, “Reach im-
provement of mode division multiplexed systems using fiber splices,”
IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1091–1094, Jun. 2013.

[33] A. Lobato, F. Ferreira, M. Kuschnerov, D. van den Borne, S. L. Jansen,
A. Napoli, B. Spinnler, and B. Lankl, “Impact of mode coupling on
the mode-dependent loss tolerance in few-mode fiber transmission,” Opt.
Exp., vol. 20, no. 28, pp. 29776–29783, Dec. 2012.

[34] J. Carpenter, B. Eggleton, and J. Schröder, “110×110 optical mode
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