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Abstract—Approaching the capacity limits of single-mode fiber
based optical transmission systems, new fibers supporting the
propagation of up to six orthogonal spatial modes, called few-
mode fibers, stand as promising candidates for future high-
capacity systems. Extensive research is being carried out to
further increase the number of modes to multiplex more data.
This technique is known as spatial division multiplexing (SDM).
However, the co-existence of modes in the same space leads
to inevitable modal crosstalk that may induce a loss of their
orthogonality as well as power disparities. This phenomenon
is called mode dependent loss (MDL) and mainly arises from
optical components such as few-mode amplifiers. Although op-
tical solutions were suggested to reduce MDL by inserting mode
scramblers or using fibers with strong modal coupling, MDL
was unfortunately not completely removed. In this work, we
propose a DSP solution based on Space-Time (ST) coding along
with OFDM, originally designed for multi-antenna channels, to
mitigate MDL in SDM systems. We show that a combination of
ST coding at the transmitter and an optimal distribution of mode
scramblers in the optical link can completely absorb the penalties
induced by important levels of MDL in 6-mode SDM systems.
Later on, we address the complexity and scalability of the ST-
coding solution and propose a sub-optimal decoding scheme that
keeps the MDL-induced penalty low while considerably reducing
the decoding complexity.

I. INTRODUCTION

Spatial division multiplexing (SDM) holds out the prospects
of increasing the capacities of optical fiber transmission
links [1], especially long-haul and regional links that form
the backbone of Internet and many emerging applications
of information technology such as telepresence, Internet of
things and human-centric communications promised by future
telecommunication standards. In current optical transmission
systems, single-mode fibers (SMFs) with a small core, in
which only one mode named the fundamental mode can
propagate, are deployed. In [2], it was shown that the capacity
of SMF-based optical links has a fundamental limit due
to the non-linear effects in the fiber that arise with high
injected powers, thus defining a non-linear Shannon capacity.
Moreover, the authors in [2], [3] point out that the achieved
data rates in transmission experiments are getting closer to
this limit. Hence, SMF, despite the use of all its degrees
of freedom, namely wavelength, time and the amplitude,
phase and polarization state of the propagating optical field
for multiplexing data, is not able to cope with the ever-
growing demands for higher capacities. The remaining degree
of freedom in the fiber is space that can be explored through
the insertion of multiple cores in the same cladding (multi-

core fibers or MCFs) or through the enlargement of the fiber
core to allow the propagation of several spatial modes (multi-
mode fibers or MMFs). The capacity can be thus multiplied
by the number of orthogonal spatial channels.

However, a tight packing of multiple pathways in a single
waveguide such as modes sharing the same core in an MMF
or closely spaced cores in an MCF will inevitably lead to
crosstalk. Furthermore, in MMFs, the different spatial modes
propagate at distinct velocities leading to differential modal
delays and causing temporal inter-symbol interference (ISI).
The fiber design (core radius, refractive index profiles of
core and cladding) is crucial in order to guarantee the lowest
possible differential dispersion and the lowest modal crosstalk
which facilitates the separation of modes at the receiver us-
ing multiple-input-multiple-output (MIMO) signal processing.
With recent advances in fiber design, fibers supporting three
and six orthogonal spatial modes with low differential modal
dispersion, called few-mode fibers (FMFs), were manufac-
tured [4]. Few-mode optical components also emerged to
address simultaneously all the modes such as few-mode optical
amplifiers [5] periodically inserted for potential long-haul
applications (� 1000km). Yet, scaling beyond 6 modes while
maintaining low modal delays is currently very challenging.

The availability of low-dispersion fibers facilitates the
management of ISI at the receiver using multi-tap time-
domain MIMO filters for single-carrier formats, or single-
tap frequency-domain MIMO filters for multi-carrier formats
such as orthogonal frequency division multiplexing (OFDM)
along with a cyclic prefix to absorb interference. The latter
technique was found to achieve the lowest DSP complexity for
long-haul systems [6]. Yet, SDM systems are also impaired
by a more deleterious effect which is mode dependent loss
(MDL) arising from inline components: optical amplifiers,
couplers, multiplexers, as well as from non-unitary crosstalk
in the fiber and at fiber splices and connectors [5], [7]. Due to
imperfections in optical components, the modes experience
differential losses or gains when propagating through the
optical link which leads to signal-to-noise ratio disparities and
a loss of orthogonality between modes. MDL is a capacity-
limiting effect that cannot be rescinded at the receiver and is
thus able to reduce the multiplexing benefit of SDM systems.

Optical solutions or enhanced equalizers were previously
suggested to reduce, yet not completely remove, the accumu-
lated MDL in the link, through the use of strong coupling
fibers or mode scramblers [7]–[9]. Moreover, the optical-

IEEE ICC 2015 - Optical Networks and Systems Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 5228



component based solutions set stringent requirements in order
to obtain the desired MDL reduction. Inspired by our work on
mitigating polarization dependent loss (PDL) in polarization-
multiplexed optical transmission systems [10], we propose
Space-Time (ST) coding, a digital signal processing technique
for MIMO systems originally designed for multi-antenna wire-
less channels, to mitigate MDL in mode-multiplexed optical
transmission systems. We show that the combination of ST
coding solutions with in-line mode scramblers or fibers with
inherently strong coupling can completely absorb the SNR
penalties induced by MDL in 6⇥6 mode-multiplexed systems
where MDL levels up to 10 dB were observed. Furthermore,
we notice that fewer mode scramblers than previously sug-
gested in [7], [9], are actually needed when ST codes are
used. Later on, we end with a brief complexity analysis of
the proposed ST coding solutions and test the performance
of a reduced-complexity sub-optimal ST decoding using a
zero-forcing with decision feedback equalizer (ZF-DFE) that
surprisingly appears to be close to the optimal solution.

Accordingly, the paper is organized as follows: we start by
describing the channel model of a mode-multiplexed OFDM
optical transmission system impaired by MDL arising from
few-mode amplifiers (FMAs) in section II then we present
the ST code that will be applied for MDL mitigation in
section III. The performance of the coded scheme using an
optimal maximum-likelihood (ML) decoder is analyzed in sec-
tion IV. Later, an optimal distribution of MDL-reducing mode
scramblers in ST-coded systems is suggested in section V.
Finally, a low-complexity sub-optimal decoding is suggested
and the coding gains are compared to the ones obtained with
an optimal ML decoding in section VI.

II. MODE-MULTIPLEXED OFDM OPTICAL SYSTEM

OFDM OFDM 
Receiver 

Time Coding 
Space- 

Time Coding Modulation 
q-QAM 

Modulation 

Electrical 

Front end 

Electrical 
Optical 

Front-end 
Optical 
Channel 

 
Optical 
Channel 

 
 

Electrical 
Front end 

Optical 
Electrical 
Front-end 

q-QAM 
Demod-
ulator 

+ + 

TMuX

TMuY

TMuN

MMuH

1uMTS

1
ˆ

uMTS

...01011

...01011

 

Space- 
Time 

Decoding 
 

MTMTeq u,H

OFDM 
Transmitter 

OFDM 
Transmitter 

OFDM 
Transmitter 

OFDM 
Transmitter 

… 

OFDM OFDM 
Receiver 

… 

Fig. 1: Mode-multiplexed Space-Time coded OFDM optical
transmission system.

We consider a mode-multiplexed optical transmission sys-
tem with six single-polarization propagating modes. The num-
ber of propagating spatial modes in a fiber depends on a
cut-off frequency defined for each fiber design. The modes
are usually defined within the linearly-polarized LP mode
classification [11, Chap.4]. The fundamental mode is defined
as LP01 where the subscripts describe the transverse spatial

geometry of the mode. When increasing the core radius of
the fiber, the cut-off frequency of the LP11 mode is reached.
This mode exhibits a degeneracy into two orthogonal modes:
LP11a and LP11b resulting in a total of three spatial modes.
By increasing the core radius more, the cut-off frequency of
three other modes is reached simultaneously: the LP02, LP21a

and LP21b modes, ending up in a total of six spatial modes.
An OFDM signal along with a suitable cyclic prefix is used

to modulate the modes that will propagate through a long-
haul optical link containing FMFs with modal crosstalk and
FMAs with modal gain offsets. The strength of crosstalk in the
fiber depends on the propagation constant values of the modes
(closer values result in more crosstalk) as well as on fiber
imperfections [12], [13]. Moreover, fiber core misalignments
at splices and bending losses can induce non-unitary crosstalk
(and hence MDL) [7]. However, we intentionally choose to
keep the fiber-generated crosstalk unitary in order to focus on
modal gain disparities at FMAs that are hard to cancel due to
technological limits and induce larger MDL values [5], [14].
The transmission scheme can be seen in Fig. 1. Neglecting
any fiber non-linearity and focusing on the linear impairments
of the system to evaluate its performance, the resulting MIMO
channel for each OFDM subcarrier is given by:

Y
M⇥T

= H
M⇥M

X
M⇥T

+N
M⇥T

=

p
↵

LY

l=1

(P
l

G
l

F
l

)X
M⇥T

+N
M⇥T

(1)

where X
M⇥T

(resp. Y
M⇥T

) are the emitted (resp. the re-
ceived) complex symbols on the M = 6 modes and during
T time slots. H

M⇥M

is the channel matrix consisting of L

independent fiber spans F
l

given by:

F
span,M⇥M

=

KY

k=1

(T
k

R
k

) (2)

Each fiber span consists of K independent sections modeled
as a product of a diagonal matrix T

k

with random phase
entries uniformly drawn in [0 : 2⇡] representing modal phase
shifts, and a real orthogonal rotation matrix R

k

representing
the distributed modal crosstalk. The mode coupling angles of
the real rotation matrices R

k

are fixed by the crosstalk levels
generated at “fictional” displaced cores of two fiber sections,
computed by overlap integrals of two different propagating
modes over the fiber cross section as in [7]. The displacements
�x and �y for each section are drawn from a uniform
distribution over [��r

c

: �r

c

] where � is a percentage of
the core radius r

c

determining the coupling strength. Note
that in [7], the authors use overlap integrals to model real
core displacements generating non-unitary matrices whereas
here, we are using the overlap of different modes at fictional
misalignments to emulate unitary coupling.

A fiber span is followed by an FMA modeled as a diagonal
matrix G

l

, as well as a mode scrambler P
l

. The gains
in G

l

are assigned as follows: the LP01 mode has a unit
gain and the gain level of the LP

µ⌫

mode is given by
exp(�G01�µ⌫

ln10/20), �G01�µ⌫

being the gain offset in dB.
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P
l

are random permutation matrices obtained by randomly
permuting the rows of an identity matrix I

M

, representing
perfect mode mixers as in [7]. ↵ is a normalization factor
compensating the common link loss. It can be seen that
modal dispersion is not considered since it does not affect
the capacity of the system. The investigated channel matrix H
is hence frequency independent and observed at the level of a
single OFDM subcarrier. Finally, N

M⇥T

is an additive noise
assumed to be zero-mean white Gaussian of variance 2N0 per
complex dimension per mode added at the receiver.

Before simulating the performance of this transmission
system, we look into the statistics of the accumulated MDL
in our channel model. Previous works have shown that strong
coupling in the fiber [8] and insertion of mode scramblers [7],
[9] at the amplification stages enhanced the system perfor-
mance by averaging the losses observed by the multiplexed
signals, thus reducing gain disparities. To evaluate MDL under
different coupling scenarios, we consider an SDM system with
L = 8 spans where FMFs have a parabolic index profile
with a core radius r

c

= 8.7µm and a numerical aperture of
0.205 at � = 1550nm, supporting hence 6 spatial modes. The
field distributions of the modes are approximated by Laguerre-
Gauss modes as in [7]. Each span consists of K = 200

sections. The amplifiers present the following gain offsets
�G01�11 = �1.3dB, �G01�21 = �2dB and �G01�02 =

�0.2dB corresponding to a promising FMA technology pre-
sented in [5]. For K = 200 sections, three coupling strengths
are investigated by drawing core displacements from a uniform
distribution with � tuned to 0.6%, 3% and 5% of r

c

to
emulate weak, medium and strong mode coupling respectively.
10

6 channel realizations were numerically simulated and the
accumulated MDL levels computed for each scenario, MDL
being defined as the ratio in dB between the squares of the
highest and the lowest singular values of H. The obtained
MDL probability distribution functions (PDF) are shown in
Fig. 2 for the different coupling levels, with and without mode
scrambling.
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Fig. 2: PDF of the accumulated MDL in different coupling and
scrambling scenarios (L = 8 spans, 2dB of MDL per span).

First, we notice that coupling and scrambling significantly
reduce the average MDL as well as its variance. In weak

coupling and without scramblers, the 2dB MDL of each
amplifier sums up resulting in an accumulated MDL of
8 ⇥ 2dB = 16dB. At medium coupling, the modes are only
partially correlated and the average MDL decreases to 10dB.
Strong coupling and mode scrambling reduces the average
MDL to 6dB which is very close to

p
8⇥ 2dB = 5.7dB, the

expected accumulated MDL value when full, random coupling
occurs between identical MDL sources [15]. However, MDL is
not completely eliminated. The impact of MDL on the capacity
C of the MIMO channel in (1) is illustrated in Fig. 3 where
the cumulative distribution functions (CDF) of the capacity, at
SNR

dB

= 10 log10(ES

/2N0) = 10dB per mode, are given.
C is defined as [16, Chap.15]:

C =

M=6X

i=1

log2 (1 + SNR�

i

) (3)

where {�
i

} are the squares of the singular values of H and
E

S

the average symbol energy. The capacity of a 6⇥6 MDL-
free additive white Gaussian noise (AWGN) channel is also
shown as a reference.
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Fig. 3: CDF of the capacity of the 6⇥ 6 SDM system in the
different coupling and scrambling scenarios at SNR = 10dB.

III. ST CODES FOR MDL MITIGATION

In [10], we proved that ST codes efficiently mitigates PDL
in single-mode polarization-multiplexed optical transmission
systems, and showed that the offered performance enhance-
ment obeyed different criteria than those in wireless systems.
MDL, a gain disparity between modes, can be seen as a gener-
alization of PDL, a gain disparity between polarization states.
Hence, ST coding is an interesting DSP solution for MDL
mitigation. Instead of using the modes simply for multiplexing
which consists in sending a vector of independent q-QAM
symbols S

M⇥1 on M modes at a single time slot, we can
benefit from the two degrees of freedom: space and time of the
MIMO scheme to insert multiple copies of a data symbol over
different modes at different time slots. Then, at the receiver,
we can exploit these copies to get a better estimate of the data
since it would have experienced various channel states, and the
channel disparities would be further reduced. This technique is
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known as Space-Time (ST) coding and was originally designed
to combat fading in wireless MIMO communications [17].

A linear space-time code is implemented at the transmitter
by creating linear combinations of the q-QAM symbols before
sending them on M modes at T time slots. The linearity
property leads to an easier decoding of the data symbols at
the receiver using lattice decoders [18], [19]. Many ST code
families were designed for various wireless MIMO schemes.
We will focus on a specific category of codes: Space time
block codes (STBC) in which a codeword is represented by
a matrix X

M⇥T

obtained by multiplying a symbol vector
S
MT⇥1 with a generator matrix M

G

and rearranging the
obtained vector into an M ⇥ T matrix. This operation takes
place at the transmitter side in the “Space-Time Coding”
block in Fig. 1. Among STBCs, we will choose the ones that
fulfill the following requirements: first, the codeword matrices
place each data symbol on a different mode at each time slot
while maintaining a minimum decoding delay; second, the
code must be full-rate meaning that MT q-QAM information
symbols are sent in each codeword, thus it has the same
spectral efficiency as a spatially multiplexed system; finally,
a uniform average energy must be transmitted per mode. A
code family answering these requirements is the one of linear
threaded algebraic space-time (TAST) codes [18], well-known
for its generality (codes exist for any M ) and performance.
For instance, the 6⇥ 6 TAST codeword matrix is given by:

where � = exp(i⇡/12), each s
i:1...6 is a vector of 6 q-

QAM symbols, f

n

(x) = ⌃

k=1:6xk

(j

n�1
✓)

k�1 with j =

exp(i2⇡/6), ✓ = exp(i⇡/18). � and ✓ are chosen to maximize
the coding and diversity gains over a wireless Rayleigh fading
6 ⇥ 6 multi-antenna channel [18]. 36 symbols are sent on
6 time slots in each codeword, achieving a full rate of 6
symbols/time slot. Its generator matrix, which is unitary (i.e.
M

G

M†
G

= I), can be found in [18]. The unitary coding matrix
does not increase the energy of the new transmitted symbols
after encoding the q-QAM information symbols.

At the receiver side, the original data symbols are estimated
using a maximum likelihood (ML) decoder. Assuming that
the channel matrix H is known (or perfectly estimated at
the receiver) and constant during T time slots, and that all
emitted codewords X are equiprobable, the optimal detection
scheme of the channel in (1) should satisfy the ML criterion
that consists in estimating the codeword X with ˆX

ML

that
minimizes the following Euclidean distance:

ˆX
ML

= argmin

XM⇥T2C

kY �HXk2 (4)

where C is the set of all possible transmitted codewords. The
ML criterion can be further developed to explicitly show the

original q-QAM symbols when an STBC is used. To this
end, we use a column-wise vectorized form of (1) containing
the generator matrix of the ST code and define an equivalent
channel H

eq

[18]:

vecC(Y) =

2

64
H 0 0

0
. . . 0

0 0 H

3

75 vecC(X) + vecC(N)

Y
0

MT⇥1 = H
0

MT⇥MT

M
G

S
MT⇥1 +N

0

MT⇥1

= H
eq

S+N
0

(5)

where M
G

is the generator matrix of the coding scheme. In the
case of simple spatial multiplexing, T = 1 and M

G

is replaced
by the identity matrix. Given that H is a full-rank matrix and
M

G

is unitary, the ML decoding rule can be reinterpreted as:

ˆS
ML

= argmin

SMT⇥12C

0
kY0 �H

eq

Sk2 (6)

where C

0
is the set of all possible transmitted q-QAM sym-

bols. Hence, after a complex-to-real transformation of (6), C
0

can be seen as a subset of the lattice Z2MT and the ML
criterion can be implemented through reduced-search lattice
decoders such as the sphere decoder [19] for both uncoded
and ST-coded systems.

IV. ST-CODED SDM SYSTEM PERFORMANCE

After presenting the SDM transmission system and the
chosen ST code, we simulate the benefits of using ST coding
to mitigate MDL in the 6-mode SDM system in (1) with
the link parameters defined in section II. At the transmitter,
in the uncoded (or no coding: NC) scheme, a vector of 4-
QAM symbols S

m=1:6 of unit energy E

S

= 1 is sent over
the modes, providing a spectral efficiency of 12 bits per
time slot. For the coded case, a 6 ⇥ 6 TAST code is used.
The performance in terms of average bit-error-rate (BER)
curves versus SNR

dB

of both NC and ST-coded schemes
is measured through Monte-Carlo simulations. A minimum
of 100 bit errors are registered per simulation point. Three
coupling scenarios with and without scrambling at the FMAs
are presented in Fig. 4. At the receiver, in all scenarios, the
data symbols are retrieved using a sphere decoder.

From the square marked curves corresponding to NC with-
out mode scramblers, we notice that the SNR penalty at
BER = 10

�3 induced by MDL (i.e. the gap at a given BER to
a perfect MDL-free Gaussian channel) decreases from more
than 6dB for weak coupling, to 1.2dB for medium coupling
and to 0.4dB for strong coupling. Adding mode scramblers
at FMAs (triangle marked curves) reduces these penalties to
1.7dB for weak coupling and 0.4dB for medium coupling,
while it has no effect in strong coupling regime because the
modes are already fully coupled in the fiber and MDL cannot
be further reduced by scramblers, as seen from the MDL
distributions in Fig. 2. The reduction of accumulated MDL
with strong fiber coupling and mode scramblers was already
observed in previous works [8], [9].
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Fig. 4: Average BER versus SNR of 6 ⇥ 6 SDM systems (8
spans of fibers with various coupling strengths and FMAs with
a maximum modal gain offset of 2dB).

On the other hand, when the 6⇥6 TAST code is used alone
(square-marked dashed curves), it outperforms the scrambling
solution for weak coupling, reducing the SNR penalty at
BER = 10

�3 to 0.8dB. Furthermore, the code absorbs all
MDL-induced penalty in the medium and strong coupling
scenarios. Finally, combining ST coding with mode scram-
bling results in no penalty in all schemes, and not only at

BER = 10

�3 but for any given BER. These results prove
the efficiency of ST coding solutions in mitigating MDL by
averaging the losses experienced by the mode-multiplexed
data symbols, making it an interesting DSP solution for SDM
systems. ST coding can be adopted as an alternative to mode
scrambling or as a complementary solution depending on the
coupling strength in the installed FMFs.

V. OPTIMALLY SCRAMBLED ST-CODED MDM SYSTEMS

We have seen that full absorption of high MDL levels was
possible using ST codes along with mode scramblers at each
amplification stage. On the other hand, we also observed that
modal coupling and scrambling are able to reduce the accu-
mulated MDL. However, this reduction is lower bounded by
an average MDL that grows as the square root of the number
of MDL sources (FMAs in our case) in the link as explained
in [15]. This minimum average value can be reached using
solely fibers with inherently strong coupling as seen from the
MDL statistics in Fig. 2 or with regular mode scrambling
when there is not enough coupling in the fiber. In weak
coupling, mode scramblers are needed at each amplification
stage. However, for intermediate coupling strengths, a lower
number of scramblers might be installed.

The placement and number of scramblers required for an
optimal reduction of MDL are important parameters for the
design of long-haul SDM systems because real mode scram-
blers are not as perfect as modeled in the numerical studies
(perfect permutation matrices). Practical implementations of
mode scramblers include few meters of strong-coupling fibers
or mode converters with free-space optical components having
non-negligible crosstalk and insertion losses. In order to find
the optimal scrambling map for the studied SDM system, we
define the ratio r = N

scr

/L where N

scr

denotes the number
of scramblers per L fiber spans, with 0  r  1 allowing at
most for a single mode scrambler per span. Considering the
parameters of the 6-mode system in section II, we draw the
evolution of the average accumulated MDL with the number of
spans L for different coupling strengths (obtained by varying
the maximum core displacements �) and in the absence of
mode scramblers. The resulting curves are drawn in Fig. 5
along with the lower bound 2

p
L where 2dB stands for the

MDL per FMA. Then, for each �, we vary the ratio of mode
scramblers r in the link and determine the minimum ratio
r

opt

that leads to an average MDL within 1dB of its lower
bound 2

p
LdB. For a small number of spans, the optimal MDL

reduction cannot be reached because the modes are not yet
fully coupled as we can see from Fig. 2 in the weak coupling
scenario with mode scramblers at each FMA (r = 1). In this
case, r

opt

is determined for a longer SDM system in which the
modes are fully coupled. Fig. 6 shows the optimal values r

opt

obtained for different coupling strengths as well as a linear
interpolation for intermediate values. We see that for �  1%,
a mode scrambler is needed at each span and beyond 5%,
mode scramblers are no longer needed.
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VI. LOW-COMPLEXITY DECODING WITH ZF-DFE

ST coding can be generalized to larger M ⇥M SDM sys-
tems. However, the downside of this solution is its increased
decoding complexity that grows as O((MT )

6
) using a sphere

decoder with an appropriate initial radius [19]. This can turn
ST codes into a prohibitive MIMO solution for larger SDM
systems. Therefore, we suggest a variant that trades a portion
of the optimal coding gains for a reduction in complexity and
a better scalability. In [10], we showed that the performance
enhancement offered by ST coding in PDL-impaired systems
obeyed different criteria than those in wireless systems. An
analytic expression of the minimum distance between the
possible emitted symbols after propagating in a PDL-impaired
channel is given in [10]. ST-coded schemes exhibited a larger
minimum distance compared to uncoded schemes which trans-
lates into a better performance. Hence, only a coding gain
is brought by the codes while no diversity gain is needed
which is not the case for Rayleigh fading MIMO channels.
We conjecture that the same behavior is observed in MDL-
impaired systems and propose sub-optimal decoding of ST
schemes to check whether it can achieve any coding gain.

For that, we replace the sphere decoder with a sub-optimal
zero-forcing with decision feedback equalizer (ZF-DFE). In

wireless MIMO channels, ZF-DFE demonstrates a perfor-
mance gain over the classic ZF decoder that performs a simple
channel inversion, notably through its successive interference
cancellation while retrieving the data symbols [20]. However,
both decoders perform far worse than an ML decoder because
they fail to attain the full diversity of the wireless channel. ZF-
DFE decoding consists in performing a QR decomposition of
H

eq

that rewrites the channel as a product of a unitary matrix
Q and an upper triangular matrix R. An equivalent channel
is obtained by applying the inverse of Q on (5). Then, each
symbol in the vector ˆS

ZF�DFE

is estimated by solving the
linear system ˜Y = RS. R being upper triangular, this can
be done in an iterative fashion starting from the last symbol
and performing a threshold decision on each estimated symbol
before feeding it to the previous equation [20]. The complexity
of this algorithm is fixed by the QR decomposition of the
channel matrix and the resolution of the linear system. A
rough estimation of this complexity in flops defined as the
number of required complex scalar multiplications in order
to decode a transmitted symbol S gives O((MT )

3
), nearly

the same complexity as for a ZF equalization (simple channel
inversion) for large MIMO systems and negligible compared
to the complexity of a sphere decoder.

Monte-Carlo simulations were carried to assess the perfor-
mance of ZF-DFE on the previously defined 6⇥6 SDM system
with L = 8 spans. The average BER curves of both, NC
and TAST-coded schemes for three fiber coupling strengths
are given in Fig 7. In all scenarios, mode scramblers are
used at FMAs. Strong or medium coupling along with mode
scrambling induce the same MDL distributions, hence the
same BER performance given in Fig. 7a. Obviously, ZF-
DFE performs worse than ML decoding for the NC scheme
(circle marked curves) because of noise enhancement. On the
other hand, when ST coding is used along with ZF-DFE
decoding (dashed curves), a performance gain is obtained
in all cases. At BER = 10

�3, the ZF-DFE decoded ST
scheme has the same penalty of 0.4dB as the optimal ML-
decoded NC scheme for medium and strong coupling while it
outperforms the NC scheme for weak coupling, providing a
coding gain of 1.2dB. Surprisingly, this observed performance
of ST codes is completely different from the one obtained on
a wireless channel where ZF-DFE decoding of the codewords
would not bring any gains due to the different nature of
the channel. In all investigated scenarios, the low-complexity
decoded ST scheme for a 6⇥6 SDM system is at worst at 1dB
from its corresponding ML-decoded scheme that matches the
performance over an MDL-free Gaussian channel. We have
also tested a ZF decoding of the ST scheme that had a poorer
performance than ZF-DFE.

VII. CONCLUSION

In this paper, we have shown, through numerical simu-
lations, that ST coding is a promising solution for MDL
mitigation in SDM systems. It can be used as a standalone
solution or to complement other optical components-based
solutions such as mode scrambling depending on the coupling
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Fig. 7: Average BER versus SNR of ZF-DFE decoded 6 ⇥ 6

ST schemes with mode scrambling (L = 8 spans of fibers,
FMAs with MDL = 2dB).

strength in the installed fibers. The ML performance of the
applied codes was investigated, showing a complete mitigation
of MDL levels up to 10dB in a 6-mode system, relaxing thus
the gain offset requirements in optical components such as
FMAs and improving the reach of the transmission system.
The requirements in terms of coupling strengths and mode
scrambling in the optical link were also investigated in order to
find the configurations that minimize MDL to its lowest value,
letting the ST code manage the residual MDL. Furthermore,
we showed that a performance enhancement can also be
brought to MDL-impaired systems using a low-complexity
sub-optimal ZF-DFE decoding of the ST schemes, trading
thus a portion of the coding gains for a complexity reduction
in order to ensure that the DSP remains tractable. These
observations pave the way for further investigation of the
capabilities of ST coding such as the maximum loss disparities
that can be mitigated, allowing to further reduce the number
of required scramblers (r

opt

). In the future, a refinement of
the MDM channel model and a transmission experiment are
envisaged in order to study different MDL sources and to take
into account the interaction of modal dispersion and MDL, as

well as polarization-multiplexed MDM channels where PDL
can be added as another performance-limiting effect.
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