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Abstract—The last two decades have known an exponential
growth in the demand for network bandwidth. Since single
mode fiber systems are approaching the nonlinear Shannon
limit, multimode fibers (MMF) holds the promise to increase
the capacity of optical transmission systems. Propagating modes
through multimode fibers are affected by a non-unitary crosstalk
known as mode dependent loss (MDL). The impact of MDL and
its detrimental effect on the channel capacity was reported in
many studies. Space-time coding already designed for wireless
communications, was proved to mitigate the non-unitary effects
of mode dependent loss. In this paper we derive an upper bound
of the error probability of the optical channel affected by MDL,
this upper bound yields the design criterion of space-time codes
allowing total mitigation of MDL in space division multiplexed
transmission systems.

Index Terms—Mode Dependent Loss, Space-Time Coding, Er-
ror Probability, Optical Fiber Communication, MIMO

I. INTRODUCTION

Optical transmission systems are fundamental for telecom-
munication infrastructure. For long-haul as well as metropolitan
and access networks, this technology can carry data over long
distances with low attenuation. Originally, the first optical
links were non-coherent and the modulation format used is
the so called On-Off keying. This technique has a low cost
and requires only a low amount of optical components but
uses only the amplitude of the electromagnetic field. To in-
crease the capacity of optical fiber links coherent detection
was introduced. This technology allows the detection of the
amplitude and the phase of signals and hence the use of higher
order modulation formats. In addition to coherent detection,
wavelength division multiplexing (WDM) and advancement
in optical amplifiers enabled the transmission of independent
modulated wavelengths without opto-electrical regeneration [1].
Moreover, polarization division multiplexing (PDM) can double
the capacity of a link by using the two orthogonal polarizations
of the electromagnetic field. However WDM-PDM systems
are approaching their nonlinear limit. This nonlinear property
is due to the increasing amount of light injected in a small
volume [2], [3].

The last twenty years have known an exponential growth in
the demand for more network capacity, this growth was mainly
caused by the built out of the Internet and the growing traffic
generated by an increasing number of users. Since frequency,
time, phase, polarization have already been used to satisfy the
demand for bandwidth, space [4] remains the only available
degree of freedom that can be used in optical transmission

systems in order to increase the capacity. Space division
multiplexing (SDM) can be realized through multimode fibers
that allow the propagation of many modes in a single core
or multi-core fibers (MCF) where each core can be single-
mode or multimode. In the ideal version, SDM can multiply
the capacity of a link by the number of propagating modes.
In real transmission systems, modes are affected by cross-talk
especially if cores are close in MCF or if differential mode
group delay (DMGD) is close to zero in MMF. Multiple-
input multiple-output (MIMO) decoding techniques already
used in wireless communications allow to recover the signals
at the receiver. Moreover propagating modes are affected by a
non-unitary cross-talk known as mode dependent loss arising
from fiber imperfections [5] (splices, microbends) and optical
components (amplifiers, multiplexers). The impact of MDL and
its detrimental effect on the channel capacity was reported in
several studies [4], [6], [7].

In this work, we are interested in SDM system based MMF
which can be represented as a M ×M MIMO system, where
M modes are emitted (resp. detected) at the transmitter (resp.
receiver). Optical solutions such as mode scrambling or strong
mode coupling fibers were suggested to reduce the impact of
MDL on the channel capacity. In [8] the authors show that
placing mode scramblers between fiber spans mitigates MDL,
however this technique needs a high number of scramblers
which does not introduce any extra MDL. In a recent work [9],
a digital signal processing technique based on space-time cod-
ing was proved to mitigate MDL in mode division multiplexed
systems. For a 6× 6 MIMO SDM system and a link MDL of
10 dB the authors demonstrated that space-time codes originally
designed for wireless MIMO systems completely absorbs the
SNR penalty. In this paper, we investigate through theoretical
analysis the benefit of space-time coding for the SDM optical
channel affected by MDL. We derive a design criterion for
space-time codes construction based on the error probability
upper bound, we also analyze the behavior of some existing
codes and compare their performance.

This paper is organized as follows: In Section II we start
by describing a mathematical channel model for SDM optical
channel affected by MDL and review the effect of MDL
on the system capacity. In Section III we derive an upper
bound of the error probability. In Section IV we define a
design criterion of codes that minimizes the error probability
of a transmission system through multimode fibers affected by
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MDL. In Section V we investigate the performance of some
existing space-time codes. Finally in Section VI we conclude
and set forth the perspectives of our work.

II. CHANNEL MODEL

A. Optical Channel with MDL
The effect of mode dependent loss on propagation has been

investigated in many studies [4], [6], [7]. The link MDL
depends on the number and nature of concatenated fiber spans.
In our work we consider a mathematical channel model made of
a single lumped MDL element to derive the error probability
upper bound. This model was used in [10] to study the bit
error rate performance of the optical channel affected by MDL.
To focus on the impact of MDL on system performance,
polarization crosstalk is not considered and we neglect fiber
nonlinearities. Differential mode group delay is also not con-
sidered since it does not impact the system capacity and can
be managed using OFDM format with a cyclic prefix larger
than the maximum DMGD. The multiple-input multiple-output
system may be described by:

YM×T = H.XM×T +NM×T (1)

XM×T is a space-time codeword, where at each instant a
linear combination of information symbols is sent on each
mode. YM×T is the received codeword where T represents
the temporal codelength . NM×T is the noise assumed to
be additive white Gaussian with variance 2σ2 per complex
dimension. The channel matrix is given by:

H =
√
α
√
DU. (2)

D is a diagonal matrix, its entries are uniformly drawn in
[λmin,λmax] and represent different losses experienced by each
mode. In the absence of MDL the matrix D is equal to the
identity matrix (D = I). U is a unitary matrix, it represents
coupling between modes. α = M∑M

i=1 λi
factors out the mode

average propagation loss such that Trace(HH∗) = M .

B. Mode Dependent Loss
There are two different definitions of mode dependent loss

in literature. In [11] it is defined as the standard deviation (std)
of the channel matrix eigenvalues as follows: MDL = std(λi).
In [4], [6], [7] mode dependent loss is defined as the ratio of the
maximum to the minimum eigenvalues of the channel matrix:
MDL(dB) = 10. log(MDL) = 10. log(λmax

λmin
). We adopt this

last definition in the rest of our work.
The capacity of a MIMO-SDM system is given by:

C =
M∑

i=1

log2(1 +
ρ

M
λi) (3)

Where ρ is the signal to noise ration. In the absence of MDL,
space division multiplexing based multimode fiber multiplies
the capacity of a link by the number of propagating modes, in
this case all modes have the same attenuation (λi = 1). Due to
MDL this capacity is reduced and in the worst case the fiber
supports the propagation of only one spatial mode [11].

III. AN UPPER BOUND OF THE ERROR PROBABILITY

In the following we suppose that H is known at the receiver,
the error probability is defined as:

Perror =
∑

Xi∈C

Pr(Xi)Pr(Xj ̸= Xi/Xi) (4)

Where Xi (resp. Xj) is the transmitted (resp. the estimated)
codeword. For equiprobable codewords the error probability
can be upper bounded by [13]:

Perror ≤
∑

Xi∈C

1

card(C)

∑

Xi ̸=Xj

Pr(Xi → Xj) (5)

Where C is the codebook made of all possible codewords and
card(C) is the cardinality of C. Pr(Xi → Xj) is the pairwise
error probability given by:

Pr(Xi → Xj) = Q(
∥H(Xi −Xj)∥

2σ
) (6)

with Q(x) =
1

2π

∫ +∞

x
e−t2dt

Using Chernoff’s bound and averaging over channel realiza-
tions we get:

Pr(Xi → Xj) ! EH [exp(−∥H(Xi −Xj)∥2

8σ2
)] (7)

Let the minimum euclidean distance of the codebook be:
d2min = min

Xi ̸=Xj

∥Xi −Xj∥2. The number of nearest neighbors

Nmin,i of Xi is defined as the number of codewords that are
at dmin of Xi.
Let X = Xi−Xj denote the difference of two codewords, we
obtain:

Pr(Xi → Xj) ! EH [exp(−

∥∥∥
√

M∑M
i=1 λi

√
DUX

∥∥∥
2

8σ2
)] (8)

! EH [exp(− M
∑M

i=1 λi

Tr(DUXX⋆U⋆)

8σ2
)] (9)

In the coming we derive the error probability upper bound
for orthogonal space-time codes, afterwards we deal with the
general case of space-time codes.

A. Orthogonal Space-Time Codes

Orthogonal space-time codes were widely studied for
wireless communication. Thanks to code orthogonality, the
maximum-likelihood decoding of these codes is equivalent to a
linear processing which reduces the decoding complexity [14].
The main drawbacks of these code family is the transmission
rate limitation. For example, the famous Alamouti code has
a rate of 1

2 sym/c.u (symbol/channel use) when used for a
2×2 MIMO system. Moreover, construction properties of these
codes make the codeword difference matrix inherits the orthog-
onality property of the code [15]: XX⋆ =

∑
k |xk,i − xk,j |2 .I

for all possible codeword differences, with xk,i (resp. xk,j) the
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emitted (resp. estimated) symbols. Applying this property to
equation (9) we obtain:

Pr(Xi → Xj) ! exp(−∥X∥2

8σ2
) (10)

Reporting this in equation (5) we obtain:

Pe ≤
∑

Xi∈C

1

card(C)

∑

Xi ̸=Xj

exp(−∥X∥2

8σ2
) (11)

By using the number of nearest neighbors Nmin,i of Xi we
obtain:

Pe ≤ (
1

card(C)

∑

Xi∈C

Nmin,i) · exp(−
d2min

8σ2
) (12)

We denote Nmin = 1
card(C)

∑
Xi∈C Nmin,i the average num-

ber of closest neighbors of Xi, equation (12) becomes:

Pe ≤ Nmin · exp(−d2min

8σ2
) (13)

From equation (13), we notice that orthogonal space-time codes
gives an upper bound completely independent of MDL.

B. General Case of Space-Time Codes

In this section we derive an upper bound of the error
probability in the general case of space-time codes. We rewrite
inequality (5) as a summation of two terms where the first one
contains the orthogonal codeword differences and the second
term contains the non orthogonal codeword differences.

Pe ≤
∑

Xi∈C

1

card(C)

∑

Xi ̸= Xj

Xorthogonal

Pr(Xi → Xj)

+
∑

Xi∈C

1

card(C)

∑

Xi ̸= Xj

X non orthogonal

Pr(Xi → Xj) (14)

The first term of equation (14) was computed in the previous
section and is equal to N1min · exp(−d2

min
8σ2 ), where N1min is

the average number of nearest neighbors of Xi such that X
is orthogonal. In the coming, we compute Pr(Xi → Xj) such
that X is non orthogonal.
Starting from equation (9) and since

∑M
i=1 λi ! Mλmax we

get:

Pr(Xi → Xj) ! ED,U [exp(−
Tr(DUXX⋆U⋆)

8σ2λmax
)] (15)

Here, we average over the diagonal and unitary matrix entries.
XX⋆ is a square hermitian matrix, so there exists a unitary
matrix V and a diagonal matrix Σ = diag(σ1, ...,σM ) such
that: XX⋆ = V ΣV ⋆. We obtain:

Pr(Xi → Xj) ! ED,U [exp(−
Tr(DUV ΣV ⋆U⋆)

8σ2λmax
)] (16)

The matrix U is randomly drawn from the unitary matrices
ensemble, it induces that the product UV follows the same
distribution as U [16], We obtain:

Pr(Xi → Xj) ! ED,U [exp(−
Tr(DUΣU⋆)

8σ2λmax
)] (17)

by developing the term DUΣU⋆ we obtain:

P (Xi → Xj) ≤ ED,U [exp(−
∑M

i,j=1 λiσj |uij |2

8σ2λmax
)] (18)

≤ ED,U [
M∏

i=1

exp(−λi

∑M
j=1 σj |uij |2

8σ2λmax
)] (19)

≤
M∏

i=1

ED,U [exp(−λi

∑M
j=1 σj |uij |2

8σ2λmax
)] (20)

We average over λi’s that are independently uniformly drawn
in [λmin,λmax].

P (Xi → Xj) ≤
M∏

i=1

EU [

∫ λmax

λmin

exp(−λi

∑M
j=1 σj |uij |2

8σ2λmax
)

× P (λi)dλi] (21)

=
M∏

i=1

EU [
exp(−

∑M
j=1 σj |uij |2

8σ2 − exp(− λmin
λmax

∑M
j=1 σj |uij |2

8σ2 )

(λmax−λmin)
∑M

j=1 σj |uij |2

8σ2λmax

]

(22)

=
M∏

i=1

EU [exp(−
1

2
(1 +

λmin

λmax
)

∑M
j=1 σj |uij |2

8σ2
)×

2 sinh(
1

2
(1− λmin

λmax
)

∑M
j=1 σj |uij |2

8σ2
)))] (23)

In equation (21) P (λi) represents the probability distribution
function of λi and it is given by:

P (λi) =

{ 1
λmax−λmin

if λmin ! λi ≤ λmax

0 elsewhere

We use the approximation of the hyperbolic sine at high SNR:
sinh(x) = exp(x)/2

x→∞
so we get:

P (Xi → Xj) ≤
M∏

i=1

EU [exp(−(
λmin

λmax
)

∑M
i=1 σj |uij |2

8σ2
)] (24)

= EU [exp(−
λmin

λmax

∑M
j=1

∑M
i=1 σj |uij |2

8σ2
)]

(25)

= EU [exp(−
λmin

λmax

∑M
j=1 σj

8σ2
)] (26)

= EU [exp(−
∥X∥2

8σ2MDL
)] (27)

Equation (27) is independent of the unitary matrix U so we
get:

P (Xi → Xj) ≤ exp(− ∥X∥2

8σ2MDL
) (28)
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Substituting (28) in the second term of equation (14) gives:

Pe ≤ N1min · exp(−d2min

8σ2
)

+
∑

Xi∈C

1

card(C)

∑

Xi ̸= Xj

Xorthogonal

exp(− ∥X∥2

8σ2MDL
) (29)

Let N2min be the number of nearest neighbors of Xi such that
X is non orthogonal, we obtain:

Pe ≤ N1min · exp(−d2min

8σ2
)

+
∑

Xi∈C

1

card(C)
N2min,i .exp(−

d2min

8σ2MDL
) (30)

by denoting N2min =
∑

Xi∈C
1

card(C)N2min,i we arrive at:

Pe ≤ N1min · exp(−d2min

8σ2
) +N2min · exp(− d2min

8σ2MDL
) (31)

IV. DESIGN CRITERION

From equation (31), the error probability upper bound is
composed of two terms. The first one comes from the orthogo-
nal codeword differences, it is completely independent of MDL.
The second term is affected by MDL and comes from the non
orthogonal difference codewords. In order to minimize the error
probability upper bound the first term should be the dominant
term of the upper bound.

Proposition: In order to minimize the error probability, the
average number of nearest neighbors N1min of a space-time
code such that X is orthogonal should be maximized.

The design criterion obtained is directly related to the
orthogonality of codeword differences, it is completely different
from the rank and the determinant criteria of a Rayleigh fading
channel. In Table I, we have computed the average number
of orthogonal and non-orthogonal closest neighbors of Xi for
different space-time codes. We notice that the Alamouti code
has N2min = 0, this is due to the orthogonal structure of this
code. The codewords of the Silver code have more orthogonal
nearest neighbors (6.5 neighbors) than the codewords of the
TAST code (4 neighbors). Codewords of The golden code have
no nearest orthogonal neighbors. This observation makes us
think that the silver code gives the best performance followed
by the TAST then the Golden code.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of different
space-time codes for a 2× 2 and 3× 3 MIMO-SDM systems.
We compare the performance in term of bit-error rate (BER)
curves versus the signal to noise ratio. At the receiver a
maximum-likelihood (ML) decoder search for the codeword
that minimizes the quadratic distance with the transmitted
symbol.

TABLE I: Average number of orthogonal and non-orthogonal neighbors of Xi
for different codes.

N1min N2min Nmin,Total

Silver Code 6.5 1.5 8
TAST Code 4 4 8

Golden Code 0 8 8
Alamouti Code 8 0 8

A. Two-Mode Fiber Optical Channel
In order to have a clear sight on the impact of the

orthogonality of the codeword difference matrices on the error
probability, we simulated four different space-time codes which
are the Silver, Golden, Alamouti and TAST code. We use 4-
QAM symbols to construct codewords of the Silver, Golden
and TAST code (full rate codes with 2 symbols/cu), and 16-
QAM symbols to construct codewords for the Alamouti code
(half rate code with 1 symbol/cu).

In Fig.1 we report the performance of the Alamouti code. We
notice that this code gives the same performance for different
MDL values. This results is confirmed by the upper bound of
equation (13).
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Fig. 1: Bit Error Rate as a function of SNR for the Alamouti code for
MDL = 6, 10 dB.

In Fig. 2 we compare the performance of the Silver, TAST
and Golden code for MDL = 10 dB. we notice that the silver
code outperforms the two other codes, this can be explained by
the higher number of orthogonal codeword differences that the
silver code has . The Golden code is the less optimal because
for this code Xi has no orthogonal neighbors at dmin. The
performance of the TAST code comes between the Silver and
the Golden with an average number of orthogonal neighbors
equal to 4.

These results are completely different from wireless Rayleigh
channel where the Golden code is the best code.

B. Three-Mode Fiber Optical Channel
In this subsection, we study the impact of MDL on the error

probability. We use a 3 × 3 TAST code which is a full rate
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Fig. 2: Bit Error Rate as a function of SNR for the Silver Golden and TAST
codes, for MDL = 10dB.

code. In Fig. 3 we report the performance of this code for
MDL = 6, 10 dB. We notice that for MDL = 6 dB the TAST
code absorbs all MDL. For MDL = 10 dB and at BER = 10−4,
the SNR penalty of the SDM optical channel to the Gaussian
channel is 1.2dB. This behavior can also be explained by the
equation (31). In fact, an increasing MDL leads to increase
the second term of the upper bound and hence a loss in the
performance.
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TAST 3x3, MDL=6dB
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Fig. 3: Bit Error Rate as a function of SNR for the 3 × 3 TAST code, for
MDL = 6,10 dB.

VI. CONCLUSION

Space time coding is a high potential technique that improves
the performance of space division multiplexing systems based
optical fibers. In this paper, we established an upper bound
for the error probability of SDM optical channels affected by
MDL. This expression allows to compare the performance of
different existing space-time codes, the expression also yields
a design criterion for new codes construction. According to

this criterion the number of orthogonal codeword differences
should be maximized. In our future work, we look forward to
construct a new space-time code that satisfies this criterion and
therefore absorbs all channel penalties induced by MDL.

REFERENCES

[1] P. J. Winzer, “High-Spectral-Efficiency Optical Modulation Formats,” in
Journal of Lightwave Technology, vol. 30, no. 24, pp. 3824-3835, Dec.15,
2012.

[2] G. Bosco, A. Carena, P. Poggiolini, V. Curri, and F. Forghieri, “Non-
linearity Compensation Limits in Optical Systems with Coherent Re-
ceivers,” in Advanced Photonics Congress, OSA Technical Digest (on-
line), paper SpW3B.6.

[3] F. Yaman, G. Li, “Nonlinear Impairment Compensation for Polarization-
Division Multiplexed WDM Transmission Using Digital Backward Prop-
agation,” in IEEE Photonics Journal, vol. 2, no. 5, pp. 816-832, Oct.
2010.

[4] P. Winzer and G. Foschini, “MIMO capacities and outage probabilities in
spatially multiplexed optical transport systems,” Opt. Express 19, 16680-
16696 (2011).

[5] S. Warm and K. Petermann, “Splice loss requirements in multi-mode
fiber mode-division-multiplex transmission links,” Opt. Express 21, 519-
532 (2013).

[6] C. Antonelli, A. Mecozzi, M. Shtaif, and P. Winzer, “Modeling and
performance metrics of MIMO-SDM systems with different amplification
schemes in the presence of mode-dependent loss,” Opt. Express 23, 2203-
2219 (2015).

[7] A. Lobato, F. Ferreira, J. Rabe, B. Inan, S. Adhikari, M. Kuschnerov,
A. Napoli, B. Spinnler, B. Lankl, “On the mode-dependent loss com-
pensation for mode-division multiplexed systems,” in 15th International
Conference on Transparent Optical Networks (ICTON), 2013

[8] A. Lobato, F. Ferreira, J. Rabe, M. Kuschnerov, B. Spinnler, B. Lankl,
“Mode scramblers and reduced-search maximum-likelihood detection for
mode-dependent-loss-impaired transmission,” in 39th European Confer-
ence and Exhibition on Optical Communication (ECOC 2013), Sept. 2013

[9] E. Awwad, G. Rekaya-Ben Othman; Y. Jaouen, “Space-Time Coding
Schemes for MDL-Impaired Mode-Multiplexed Fiber Transmission Sys-
tems,” in Journal of Lightwave Technology, vol.33, no.24, pp.5084-5094,
Dec 2015

[10] Guan, K.; Winzer, P.J.; Shtaif, M., “BER Performance of MDL-Impaired
MIMO-SDM Systems With Finite Constellation Inputs,” in IEEE Pho-
tonics Technology Letters, , vol.26, no.12, pp.1223-1226, June, 2014

[11] K. Ho and J. Kahn, “Mode-dependent loss and gain: statistics and effect
on mode-division multiplexing,” Opt. Express 19, 16612-16635 (2011).

[12] V. Tarokh, N. Seshadri, A.R. Calderbank, “Space-time codes for high
data rate wireless communication: performance criterion and code con-
struction,” in IEEE Transactions on Information Theory, vol.44, no.2,
pp.744-765, Mar 1998.

[13] J. Proakis, M. Salehi, Digital Communications, Fifth Edition, Chapter 4,
p.182-184, Mc Graw - Hill International Edition (2008).

[14] T. Vahid, H. Jafarkhani, A.R. Calderbank, ”Space-time block codes from
orthogonal designs,” in IEEE Transactions on Information Theory, vol.45,
no.5, pp.1456-1467, Jul 1999

[15] O. Tirkkonen, A. Hottinen, “Square-matrix embeddable space-time block
codes for complex signal constellations,” in IEEE Transactions on Infor-
mation Theory, vol.48, no.2, pp.384-395, Feb 2002

[16] F. Mezzadri, “How to generate random matrices from the classic compact
groups,” Notices of the American Mathematical Society, Vol 54, pp 592-
604, 2007

[17] Alamouti, S, ”A simple transmit diversity technique for wireless com-
munications,” in IEEE Journal on Selected Areas in Communications,
vol.16, no.8, pp.1451-1458, Oct 1998

2016 23rd International Conference on Telecommunications (ICT)


